new hire

Deloitte names new Houston-based leader of energy, chemicals practice

Teresa Thomas was named vice chair and national sector leader for energy and chemicals at Deloitte. Photo via LinkedIn

Deloitte announced a new local leader to oversee energy and chemicals nationally.

Teresa Thomas was named vice chair and national sector leader for energy and chemicals at Deloitte. Based in Houston, she will also serve as an advisory partner and leader in Deloitte & Touche LLP's Risk & Financial Advisory energy and chemicals practice.

She will lead the strategic direction of Deloitte's energy and chemicals practice and drive program growth in the sector. Thomas succeeds Amy Chronis, partner at Deloitte LLP, who will continue to serve within the energy and chemicals practice until her retirement in June 2024.

"I am fortunate to have worked in the energy and chemicals industry for most of my career, and I'm honored to continue working with companies that are playing a pivotal role in powering progress and purpose," Thomas says in a news release. "Our industry is at the epicenter of the energy transition that can fuel tremendous potential for society, and I'm excited to be leading during this important and transformational time."

Last year, Chronis announced her retirement from Deloitte, and the company named Melinda Yee as the incoming Houston managing partner at Deloitte, a role Chronis held in addition to the title of vice chair and US energy and chemicals leader. Chronis is slated to retire in June 2024, and Yee's new role became effective this month.

Thomas has served in a variety of leadership roles and has more than 20 years of experience in the energy industry. She is used to serving multiple large clients, and developing deep C-suite and board relationships, as well as advising on future success for the business, and the industry as a whole. She was named as one of Hart Energy's 25 most influential women in energy in 2023, and is the vice chair and board member of The Rose, which is a nonprofit women's breast health organization in Southeast Texas.

"Teresa has played an integral role as strategic advisor to many of our valued energy and chemicals clients as they navigate significant transition, and her leadership, enthusiasm and vision will help shape the future of our practice," Stanley Porter, vice chair at Deloitte and U.S. energy, resources and industrials leader, says in a news release. “I am confident that Teresa brings the right vision, experience and relationships to further lead and grow the energy and chemicals sector as it experiences critical transformation and convergence."

Trending News

A View From HETI

Researchers from Rice University say their recent findings could revolutionize power grids, making energy transmission more efficient. Image via Getty Images.

A new study from researchers at Rice University, published in Nature Communications, could lead to future advances in superconductors with the potential to transform energy use.

The study revealed that electrons in strange metals, which exhibit unusual resistance to electricity and behave strangely at low temperatures, become more entangled at a specific tipping point, shedding new light on these materials.

A team led by Rice’s Qimiao Si, the Harry C. and Olga K. Wiess Professor of Physics and Astronomy, used quantum Fisher information (QFI), a concept from quantum metrology, to measure how electron interactions evolve under extreme conditions. The research team also included Rice’s Yuan Fang, Yiming Wang, Mounica Mahankali and Lei Chen along with Haoyu Hu of the Donostia International Physics Center and Silke Paschen of the Vienna University of Technology. Their work showed that the quantum phenomenon of electron entanglement peaks at a quantum critical point, which is the transition between two states of matter.

“Our findings reveal that strange metals exhibit a unique entanglement pattern, which offers a new lens to understand their exotic behavior,” Si said in a news release. “By leveraging quantum information theory, we are uncovering deep quantum correlations that were previously inaccessible.”

The researchers examined a theoretical framework known as the Kondo lattice, which explains how magnetic moments interact with surrounding electrons. At a critical transition point, these interactions intensify to the extent that the quasiparticles—key to understanding electrical behavior—disappear. Using QFI, the team traced this loss of quasiparticles to the growing entanglement of electron spins, which peaks precisely at the quantum critical point.

In terms of future use, the materials share a close connection with high-temperature superconductors, which have the potential to transmit electricity without energy loss, according to the researchers. By unblocking their properties, researchers believe this could revolutionize power grids and make energy transmission more efficient.

The team also found that quantum information tools can be applied to other “exotic materials” and quantum technologies.

“By integrating quantum information science with condensed matter physics, we are pivoting in a new direction in materials research,” Si said in the release.

Trending News