new hire

Houston private equity professional tapped to lead growth development at firm focused on decarbonization

Climate Investment announced Patrick Yip will lead the firm's growth investment strategy as managing director, head of growth. Photo via LinkedIn

A London-based energy transition investment firm has named a new Houston-based leader.

Climate Investment announced Patrick Yip will lead the firm's growth investment strategy as managing director, head of growth. In his new role, he will oversee the development of CI’s growth-stage portfolio, including deal sourcing, operational function of strategy, and working with the team that manages the firm's early-stage Catalyst program. He reports to the CEO, Pratima Rangarajan.

“We are excited to welcome Patrick to Climate Investment,” Rangarajan says in a news release. “The decarbonization investment opportunity continues to grow rapidly, and Patrick’s extensive experience will help us capitalize on that. He will also provide leadership and develop the market partnerships that will drive our growth investment strategy forward, playing a key role in supporting portfolio market adoption and accelerating the next stage of development for CI.”

Founded in 2016 by members of the Oil & Gas Climate Initiative (OGCI), CI grew its strategy last year to focus on more growth-stage opportunities so that its portfolio reflects both a maturing decarbonization pipeline as well as new technologies.

“Investing in Growth is a natural extension of our early-stage Catalyst strategy, enabling us to bring our experience and industry relationships to a wider range of companies that are poised for market expansion,” Rangarajan adds.

Yip, who will continue to be based in Houston, previously served as managing director for GEC, a Houston-based energy transition investment firm. He also previously worked at Halliburton on its mergers and acquisitions team. He has also held a number of private company Board positions within the energy transition sector.

According to the firm, it has facilitated over 136 market deployments from its portfolio companies’ technologies since it was founded less than a decade ago.

Trending News

A View From HETI

Researchers from Rice University say their recent findings could revolutionize power grids, making energy transmission more efficient. Image via Getty Images.

A new study from researchers at Rice University, published in Nature Communications, could lead to future advances in superconductors with the potential to transform energy use.

The study revealed that electrons in strange metals, which exhibit unusual resistance to electricity and behave strangely at low temperatures, become more entangled at a specific tipping point, shedding new light on these materials.

A team led by Rice’s Qimiao Si, the Harry C. and Olga K. Wiess Professor of Physics and Astronomy, used quantum Fisher information (QFI), a concept from quantum metrology, to measure how electron interactions evolve under extreme conditions. The research team also included Rice’s Yuan Fang, Yiming Wang, Mounica Mahankali and Lei Chen along with Haoyu Hu of the Donostia International Physics Center and Silke Paschen of the Vienna University of Technology. Their work showed that the quantum phenomenon of electron entanglement peaks at a quantum critical point, which is the transition between two states of matter.

“Our findings reveal that strange metals exhibit a unique entanglement pattern, which offers a new lens to understand their exotic behavior,” Si said in a news release. “By leveraging quantum information theory, we are uncovering deep quantum correlations that were previously inaccessible.”

The researchers examined a theoretical framework known as the Kondo lattice, which explains how magnetic moments interact with surrounding electrons. At a critical transition point, these interactions intensify to the extent that the quasiparticles—key to understanding electrical behavior—disappear. Using QFI, the team traced this loss of quasiparticles to the growing entanglement of electron spins, which peaks precisely at the quantum critical point.

In terms of future use, the materials share a close connection with high-temperature superconductors, which have the potential to transmit electricity without energy loss, according to the researchers. By unblocking their properties, researchers believe this could revolutionize power grids and make energy transmission more efficient.

The team also found that quantum information tools can be applied to other “exotic materials” and quantum technologies.

“By integrating quantum information science with condensed matter physics, we are pivoting in a new direction in materials research,” Si said in the release.

Trending News