take note

Houston-area entrepreneurs land on Forbes 30 Under 30 — and more things to know this week

Giga Energy's co-founders landed on Forbes 30 Under 30 — plus more things to know this week. Photo via gigaenergy.com

Editor's note: It's a new week — start it strong with three quick things to catch up on in Houston's energy transition: an event not to miss, a podcast to stream, and more.

East Texas entrepreneurs score prestigious 30 Under 30 recognition

Giga Energy co-founders Matt Lohstroh and Brent Whitehead secured spots on Forbes' annual 30 Under 30 ranking in the energy category. The Texas A&M University alumni founded the company in 2019. The startup's technology uses flare gas to generate clean and sustainable energy that is redirected into powering shipping containers full of bitcoin miners they put on top of oil wells.

Event not to miss

There's one last energy-related event for the year. On December 19, the UH Tech Bridge's Innov8Hub Pitch Day is your last chance of the year to network with industry experts, and discover the next big thing. Register.

Podcast to stream: Peter Rodriguez, dean of Rice University's Jones Graduate School of Business, on the Houston Innovators Podcast

Houston is known as the energy capital of the world, and the industry is ingrained into Rice University's DNA — especially the university's business school.

"We are deeply connected — and have been for a long time," says Peter Rodriguez, dean of Rice University's Jones Graduate School of Business. "One of the five pillars of our strategy is to be the leading business school in the country for the studying and the advancement for the energy transition and decarbonization of the economy. We think we can be the premiere school for training people for this rapidly evolving field of energy and to promulgate great research."

Rodriguez shares more about what he's accomplished in his tenure as dean on the Houston Innovators Podcast.

Trending News

A View From HETI

Rice University scientists' “recharge-to-recycle” reactor has major implications for the electric vehicle sector. Photo courtesy Jorge Vidal/Rice University.

Engineers at Rice University have developed a cleaner, innovative process to turn end-of-life lithium-ion battery waste into new lithium feedstock.

The findings, recently published in the journal Joule, demonstrate how the team’s new “recharge-to-recycle” reactor recharges the battery’s waste cathode materials to coax out lithium ions into water. The team was then able to form high-purity lithium hydroxide, which was clean enough to feed directly back into battery manufacturing.

The study has major implications for the electric vehicle sector, which significantly contributes to the waste stream from end-of-life battery packs. Additionally, lithium tends to be expensive to mine and refine, and current recycling methods are energy- and chemical-intensive.

“Directly producing high-purity lithium hydroxide shortens the path back into new batteries,” Haotian Wang, associate professor of chemical and biomolecular engineering, co-corresponding author of the study and co-founder of Solidec, said in a news release. “That means fewer processing steps, lower waste and a more resilient supply chain.”

Sibani Lisa Biswal, chair of Rice’s Department of Chemical and Biomolecular Engineering and the William M. McCardell Professor in Chemical Engineering, also served as co-corresponding author on the study.

“We asked a basic question: If charging a battery pulls lithium out of a cathode, why not use that same reaction to recycle?” Biswal added in the release. “By pairing that chemistry with a compact electrochemical reactor, we can separate lithium cleanly and produce the exact salt manufacturers want.”

The new process also showed scalability, according to Rice. The engineers scaled the device to 20 square centimeters, then ran a 1,000-hour stability test and processed 57 grams of industrial black mass supplied by industry partner Houston-based TotalEnergies. The results produced lithium hydroxide that was more than 99 percent pure. It also maintained an average lithium recovery rate of nearly 90 percent over the 1,000-hour test, showing its durability. The process also worked across multiple battery chemistries, including lithium iron phosphate, lithium manganese oxide and nickel-manganese-cobalt variants.

Looking ahead, the team plans to scale the process and consider ways it can sustain high efficiency for greater lithium hydroxide concentrations.

“We’ve made lithium extraction cleaner and simpler,” Biswal added in the release. “Now we see the next bottleneck clearly. Tackle concentration, and you unlock even better sustainability.

Trending News