Will 2023 be hydrogen’s year?

GUEST COLUMN

Scott Nyquist debates both sides of the hydrogen argument in this week’s ECHTX Voices of Energy guest column. Photo courtesy of Aramco.

Yes and no.

Yes, because there is real money, and action, behind it.

Globally, there are 600 projects on the books to build electrolyzers, which separate the oxygen and hydrogen in water, and are critical to creating low-emissions “green hydrogen.” That investment could drive down the cost of low-emissions hydrogen, making it cost competitive with conventional fuels—a major obstacle to its development so far.

In addition, oil companies are interested, too. The industry already uses hydrogen for refining; many see hydrogen as supplemental to their existing operations and perhaps, eventually, supplanting them. In the meantime, it helps them to decarbonize their refining and petrochemical operations, which most of the majors have committed to doing.

Indeed, hydrocarbon-based companies and economies could have a big opportunity in “blue hydrogen,” which uses fossil fuels for production, but then captures and stores emissions. (“Green hydrogen” uses renewables; because it is expensive to produce, it is more distant than blue. “Gray hydrogen” uses fossil fuels, without carbon capture; this accounts for most current production and use.) Oil and gas companies have a head start on related infrastructure, such as pipelines and carbon capture, and also see new business opportunities, such as low-carbon ammonia.

Houston, for example, which likes to call itself the "energy capital of the world,” is going big on hydrogen. The region is well suited to this. It has an extensive pipeline infrastructure, an excellent port system, a pro-business culture, and experience. The Greater Houston Partnership and McKinsey—both of whom I am associated with—estimate that demand for hydrogen will grow 6 to 8 percent a year from 2030 to 2050. No wonder Houston wants a piece of that action.

There are promising, near-term applications for hydrogen, such as ammonia, cement, and steel production, shipping, long-term energy storage, long-haul trucking, and aviation. These bits and pieces add up: steel alone accounts for about 8 percent of global carbon-dioxide emissions. Late last year, Airbus announced it is developing a hydrogen-powered fuel cell engine as part of its effort to build zero-emission aircraft. And Cummins, a US-based engine company, is investing serious money in hydrogen for trains and commercial and industrial vehicles, where batteries are less effective; it already has more than 500 electrolyzers at work.

Then there is recent US legislation. The Infrastructure, Investment and Jobs Act (IIJA) of 2021 allocated $9.5 billion funding for hydrogen. Much more important, though, was last year’s Inflation Reduction Act, which contains generous tax credits to promote hydrogen production. The idea is to narrow the price gap between clean hydrogen and other, more emissions-intensive technologies; in effect, the law seeks to fundamentally change the economics of hydrogen and could be a true game-changer.

This is not without controversy: some Europeans think this money constitutes subsidies that are not allowed under trade rules. For its part, Europe has the hydrogen bug, too. Its REPowerEU plan is based on the idea of “hydrogen-ready infrastructure,” so that natural gas projects can be converted to hydrogen when the technology and economics make sense.

So there is a lot of momentum behind hydrogen, bolstered by the ambitious goals agreed to at the most recent climate conference in Egypt. McKinsey estimates that hydrogen demand could reach 660 million tons by 2050, which could abate 20 percent of total emissions. Total planned production for lower-emission green and blue hydrogen through 2030 has reached more than 26 million metric tons annually—quadruple that of 2020.

No, because major issues have not been figured out.

The plans in the works, while ambitious, are murky. A European official, asked about the REPowerEU strategy, admitted that “it’s not clear how it will work.” The same can be said of the United States. The hydrogen value chain, particularly for green hydrogen, requires a lot of electricity, and that calls for flexible grids and much greater capacity. For the United States to reach its climate goals, the grid needs to grow an estimated 60 percent by 2030.That is not easy: just try siting new transmission lines and watch the NIMBY monsters emerge.

Permitting can be a nightmare, often requiring separate approvals from local, state, interstate, and federal authorities, and from different authorities for each (air, land, water, endangered species, and on and on); money does not solve this. Even a state like Texas, which isn’t allergic to fossil fuels and has a relatively light regulatory touch, can get stuck in permitting limbo. Bill Gates recently noted that “over 1,000 gigawatts worth of potential clean energy projects [in the United States] are waiting for approval—about the current size of the entire U.S. grid—and the primary reason for the bottleneck is the lack of transmission.”

Then there is the matter of moving hydrogen from production site to market. Pipeline networks are not yet in place and shifting natural gas pipelines to hydrogen is a long way off. Liquifying hydrogen and transporting is expensive. In general, because hydrogen is still a new industry, it faces “chicken or egg” problems that are typical of the difficulties big innovations face, such as connecting hydrogen buyers to hydrogen producers and connecting carbon emitters to places to store the carbon dioxide. These challenges add to the complexity of getting projects financed.

Finally, there is money. McKinsey estimates that getting on track to that 600 million tons would require investment of $950 billion by 2030; so far, $240 billion has been announced.

Where I stand: in the middle.

I believe in hydrogen’s potential. More than 3 years ago, I wrote about hydrogen, arguing that while there had been real progress, “many things need to happen, in terms of policy, finance, and infrastructure, before it becomes even a medium-sized deal.” Now, some of those things are happening.

So, I guess I land somewhere in the middle. I think 2023 will see real progress, in decarbonizing refining and petrochemicals operations and producing ammonia, specifically. I am also optimistic that a number of low-emissions electrolysis projects will move ahead. And while such advances might seem less than transformative, they are critical: hydrogen, whether blue or green, needs to prove itself, and 2023 could be the year it does.

Because I take hydrogen’s potential seriously, though, I also see the barriers. If it is to become the big deal its supporters believe it could be, that requires big money, strong engineering and construction project management, sustained commitment, and community support. It’s easy to proclaim the wonders of the hydrogen economy; it’s much more difficult to devise sensible business models, standardized contracts, consistent incentives, and a regulatory system that doesn’t drive producers crazy. But all this matters—a lot.

My conclusion: there will be significant steps forward in 2023—but take-off is still years away.

------

Scott Nyquist is a senior advisor at McKinsey & Company and vice chairman, Houston Energy Transition Initiative of the Greater Houston Partnership. The views expressed herein are Nyquist's own and not those of McKinsey & Company or of the Greater Houston Partnership. This article originally ran on LinkedIn.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston's energy industry deemed both a strength and weakness on global cities report

mixed reviews

A new analysis positions the Energy Capital of the World as an economic dynamo, albeit a flawed one.

The recently released Oxford Economics Global Cities Index, which assesses the strengths and weaknesses of the world’s 1,000 largest cities, puts Houston at No. 25.

Houston ranks well for economics (No. 15) and human capital (No. 18), but ranks poorly for governance (No. 184), environment (No. 271), and quality of life (No. 298).

New York City appears at No. 1 on the index, followed by London; San Jose, California; Tokyo; and Paris. Dallas lands at No. 18 and Austin at No. 39.

In its Global Cities Index report, Oxford Economics says Houston’s status as “an international and vertically integrated hub for the oil and gas sector makes it an economic powerhouse. Most aspects of the industry — downstream, midstream, and upstream — are managed from here, including the major fuel refining and petrochemicals sectors.”

“And although the city has notable aerospace and logistics sectors and has diversified into other areas such as biomedical research and tech, its fortunes remain very much tied to oil and gas,” the report adds. “As such, its economic stability and growth lag other leading cities in the index.”

The report points out that Houston ranks highly in the human capital category thanks to the large number of corporate headquarters in the region. The Houston area is home to the headquarters of 26 Fortune 500 companies, including ExxonMobil, Hewlett Packard Enterprise, and Sysco.

Another contributor to Houston’s human capital ranking, the report says, is the presence of Rice University, the University of Houston and the Texas Medical Center.

“Despite this,” says the report, “it lacks the number of world-leading universities that other cities have, and only performs moderately in terms of the educational attainment of its residents.”

Slower-than-expected population growth and an aging population weaken Houston’s human capital score, the report says.

Meanwhile, Houston’s score for quality is life is hurt by a high level of income inequality, along with a low life expectancy compared with nearly half the 1,000 cities on the list, says the report.

Also in the quality-of-life bucket, the report underscores the region’s variety of arts, cultural, and recreational activities. But that’s offset by urban sprawl, traffic congestion, an underdeveloped public transportation system, decreased air quality, and high carbon emissions.

Furthermore, the report downgrades Houston’s environmental stature due to the risks of hurricanes and flooding.

“Undoubtedly, Houston is a leading business [center] that plays a key role in supporting the U.S. economy,” says the report, “but given its shortcomings in other categories, it will need to follow the path of some of its more well-rounded peers in order to move up in the rankings.”

———

This article originally ran on InnovationMap.

New collaboration to build data center microgrid in Houston

coming soon

Two companies are teaming up to build a natural gas microgrid in Houston that will reduce emissions by 98 percent.

Provider of prime and backup power solutions RPower has teamed up with Houston’s ViVaVerse Solutions to build a 17-megawatt (MW) microgrid at the ViVa Center campus in Houston, which is expected to be commissioned by the end of the year.

The microgrid plans to employ ultra-low emissions and natural gas generators to deliver Resiliency-as-a-Service (RaaS), and this will connect to ViVaVerse's colocation data center operations during utility outages.

RPower will also deploy the microgrid across different ERCOT market programs, which will contribute to assist with essential capacity and ancillary services for the local grid. ERCOT has increased its use of renewable energy in recent years, but still has faced criticism for unstable conditions. The microgrids can potentially assist ERCOT, and also help cut back on emissions.

“RPower's pioneering microgrid will not only deliver essential N+1 resiliency to our data center operations but will also contribute to the local community by supplying necessary capacity during peak demand periods when the electric grid is strained,” Eduardo Morales, CEO of ViVaVerse Solutions and Morales Capital Group, says in a news release.

ViVaVerse Solutions will be converting the former Compaq Computer/HPE headquarters Campus into an innovative technology hub called the ViVa Center, which will host the High-Performance Computing Data Center, and spaces dedicated to mission critical infrastructure and technical facilities . The hub will host 200 data labs.

“We are thrilled to partner with ViVaVerse to deploy this `first of its kind' microgrid solution in the data center space,” Jeff Starcher, CEO of RPower, adds. “Our natural gas backup generation system delivers the same reliability and performance as traditional diesel systems, but with a 98 percent reduction in emissions. Further, the RPower system provides critical grid services and will respond to the volatility of renewable generation, further enabling the energy transition to a carbon free future.”