The U.S. Department of Energy funding is earmarked for the new HyVelocity Hub. Photo via Getty Images

The emerging low-carbon hydrogen ecosystem in Houston and along the Texas Gulf Coast is getting as much as a $1.2 billion lift from the federal government.

The U.S. Department of Energy funding, announced November 20, is earmarked for the new HyVelocity Hub. The hub — backed by energy companies, schools, nonprofits, and other organizations — will serve the country’s biggest hydrogen-producing area. The region earns that status thanks to more than 1,000 miles of dedicated hydrogen pipelines and almost 50 hydrogen production plants.

“The HyVelocity Hub demonstrates the power of collaboration in catalyzing economic growth and creating value for communities as we build a regional hydrogen economy that delivers benefits to Gulf Coast communities,” says Paula Gant, president and CEO of Des Plaines, Illinois-based GTI Energy, which is administering the hub.

HyVelocity, which aims to become the largest hydrogen hub in the country, has already received about $22 million of the $1.2 billion in federal funding to kickstart the project.

Organizers of the hydrogen project include:

  • Arlington, Virginia-based AES Corp.
  • Air Liquide, whose U.S. headquarters is in Houston
  • Chevron, which is moving its headquarters to Houston
  • Spring-based ExxonMobil
  • Lake Mary, Florida-based Mitsubishi Power Americas
  • Denmark-based Ørsted
  • Center for Houston’s Future
  • Houston Advanced Research Center
  • University of Texas at Austin

The hub’s primary contractor is HyVelocity LLC. The company says the hub could reduce carbon dioxide emissions by up to seven million metric tons per year and create as many as 45,000 over the life of the project.

HyVelocity is looking at several locations in the Houston area and along the Gulf Coast for large-scale production of hydrogen. The process will rely on water from electrolysis along with natural gas from carbon capture and storage. To improve distribution and lower storage costs, the hub envisions creating a hydrogen pipeline system.

Clean hydrogen generated by the hub will help power fuel-cell electric trucks, factories, ammonia plants, refineries, petrochemical facilities, and marine fuel operations.

Greentown Houston celebrated two new automation from its corporate partners. Photo via Greentown Labs/LinkedIn

Greentown Houston onboards automation tools from 2 corporate partners

new equipment

Houston’s Greentown Labs announced new resources and equipment for its members thanks to two corporate partnerships.

Greentown Houston is now home to new tools from Emerson and Puffer to help members implement strong foundations for access to contextualized data.

Automation is the theme with the latest resources, as the process assists with a startup's journey to “standardization and scalability” according to a news release from Greentown Labs. Members will have access to these two units and platforms. The DeltaV Automation Platform is a data-driven decision-making resource that aims to improve operational performance while reducing risks, costs, and downtime. It integrates real-time analytics, advanced automation solutions, sophisticated control systems, and lifecycle services.

Puffer-Sweiven is a localized, single point of contact for sales, service, and applied engineering for Emerson Automation Solutions in the Texas Gulf Coast and Central Texas area with the capabilities to combine with other members in North America to leverage global reach and technologies. Puffer is an Emerson Impact Partner.

Greentown Labs members will have access to the two new automation tools. Photo via Greentown Labs/LinkedIn

With access to the two units, Greentown Labs member companies can further explore easy-to-use, integrated-by-design DeltaV Distributed Control System. With the system, companies and members can better scale new technologies into pilot scale, optimize processes for high quality products, and implement a smart foundation for access to contextualized data. Global ROC is one company that is already utilizing the new resources at Greentown Labs.

“Our member Global ROC, which is developing a solution for cooling tower systems that reduces chemical consumption, saves water, and reduces energy costs, plans to use the system in two ways,” Global ROC CEO Ely Trujillo said to Greentown Labs via LinkedIn.

The startup will be able to create a control method that can be applied to future projects by using and comparing Global ROC’s products with the Delta V’s advanced function blocks. Trujilloalso plans to train team members to set up a Proportional Integral Derivative (PID) controller. The PID involves building a lab test box that connects to the DeltaV’s CHARM modules to control a process to a temperature by varying amperage through the DeltaV’s PID controller.

As part of the 3-year kickoff of the Texas Exchange for Energy and Climate Entrepreneurship (TEX-E), Greentown Labs also celebrated 87 Texas students from The University of Texas at Austin, Texas A&M University, University of Houston, Rice University, Prairie View A&M University, and the Massachusetts Institute of Technology have been accepted into this year's Fellowship. The students will gain access to hands-on experiences including internships, pitch competitions, entrepreneurship bootcamps, courses, and conferences geared to help the climate and energy-transition innovation field.

In March, Greentown Labs and Browning the Green Space were named the newest accelerator for the Advancing Climatetech and Clean Energy Leaders Program, or ACCEL. The seven selected startups will have a year-long curated curriculum, incubation at Greentown's two locations, and a non-dilutive $25,000 grant.
Learn more about the specific missions the Houston Energy Transition Initiative is focused on — from carbon management to finding funding. Photo via htxenergytransition.com

Houston: Where energy leaders create a low-carbon future

the view from heti

Houston is the energy capital of the world, and it faces a dual challenge: fulfilling growing global energy demand while actively reducing carbon dioxide emissions.

This is why energy leaders have come together at the Houston Energy Transition Initiative, within the Greater Houston Partnership, to strengthen the region’s position for an energy-abundant, low-carbon future. HETI’s impact work is conducted through sector-specific working groups that leverage Houston’s competitive advantage. These working groups include: Carbon Capture, Use and Storage (CCUS), Clean Hydrogen, Capital Formation, Power Management, and Industry Decarbonization.

Texas Gulf Coast as a hub for carbon management

The International Energy Agency (IEA) states that CCUS is a requirement to any realistic pathway to a low-carbon, even net-zero future. This is especially true in the Houston area, which is home to one of the nation’s largest concentrated sources of carbon dioxide. Houston has the geology, knowledge, and infrastructure to support CCUS at scale. The CCUS Working Group at HETI supports key policy enablers of scaling CCUS, including supporting the state to earn permitting authority (primacy) over carbon capture (Class VI) wells. The working group is also analyzing the cumulative impacts of carbon capture on the region’s existing infrastructure and identifying key infrastructure needs for CCUS to reach scale.

Gulf Coast preparing for clean hydrogen liftoff

The Clean Hydrogen working group has created an ecosystem for Houston to lead the clean hydrogen market. The Texas Gulf Coast region is currently home to the world’s largest hydrogen system. By assessing the impact of hydrogen on the economy and the environment, this working group is positioning Houston to be a leading clean hydrogen hub.

Houston as a leader in Industry decarbonization

Houston needs technologies including but not limited to clean hydrogen and CCUS for decarbonization. The HETI Decarbonization Working Group partners with the Mission Possible Partnership and Rocky Mountain Institute to provide a measurable baseline of emissions and identify recommendations for decarbonization pathways in the Houston region.

An energy-abundant, low-carbon future will impact our region’s power management

It is expected that there will be changes in supply and demand of electricity associated with proposed energy transition and decarbonization projects in the Houston area. HETI has partnered with Mission Possible Partnership and Rocky Mountain Institute to assess the impact of energy transition and decarbonization on the growth and resilience of Houston’s regional power grid and the transmission and distribution of energy.

Making Houston a hub for energy transition finance

Financing energy projects is extremely capital intensive. Houston currently serves as a hub for implementing new technologies, and it has the potential to become a major center for financing innovative energy solutions. This includes everything from more efficient, lower-carbon production of existing resources to technological breakthroughs in energy efficiency, renewables, energy storage, and nature-based solutions. For technological breakthroughs, Houston needs a consistent flow of capital to the region, including sources and financing models from venture capital to growth capital, to debt markets and government grants. HETI’s Capital Formation Working Group has mapped inflows and outflows of capital for the energy transition in Houston and found that we need to grow Houston’s capital inflows ten times by 2040 to $150 billion per year to lead the transition. The Working Group regularly convenes for learning sessions on capital markets.

Over the last year, HETI’s working groups have moved from strategy to impact. To learn more about the outcomes of these working groups, check out these resources.

------

This article originally ran on the Greater Houston Partnership's Houston Energy Transition Initiative blog. HETI exists to support Houston's future as an energy leader. For more information about the Houston Energy Transition Initiative, EnergyCapitalHTX's presenting sponsor, visit htxenergytransition.org.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Investors close partial acquisition of Phillips 66 subsidiary with growing EV network

M&A activity

Energy Equation Partners, a London-based investment firm focused on clean energy companies, and New York-based Stonepeak have completed the acquisition of a 65 percent interest in JET Tankstellen Deutschland GmbH, a subsidiary of Houston oil and gas giant Phillips 66.

JET is one of the largest and most popular fuel retailers in Germany and Austria with a rapidly growing EV charging network, according to a news release. It also operates approximately 970 service stations, convenience stores and car washes.

“We are delighted to complete this acquisition and to partner with Stonepeak and Phillips 66 to take JET to the next level,” Javed Ahmed, managing partner of Energy Equation Partners, said in a news release. “This investment reflects EEP’s commitment to investing in established players in the energy sector who have the potential to make a meaningful impact on the energy transition, and we are excited to work alongside the entire JET team, including its dedicated service station operators, to realize this vision.”

The deal values JET at approximately $2.8 billion. Phillips 66 will retain a 35 percent non-operated interest in JET and received about $1.6 billion in pre-tax proceeds.

“Under Phillips 66’s ownership, JET has grown into one of the largest fuel retailers in Germany and Austria," Anthony Borreca, senior managing director and co-head of energy at Stonepeak, added in a news release. "We are excited to join forces with them, as well as Javed and the EEP team, who have long-standing experience investing in and operating retail fuel distribution and logistics globally, to support the next phase of JET’s growth.”

6 must-attend Houston energy events in December 2025

Event Guide

Editor's note: The year is coming to a close, but there are still exciting energy events to attend in Houston this month. Mark your calendar now for pitch days, seminars, networking, and Reuters Energy LIVE 2025.

Dec. 4 — Resiliency & Adaptation Sector Pitch Day

Join innovators, industry leaders, investors, and policymakers as they explore breakthrough climate and energy technologies at Greentown Labs' latest installment of its Sector Pitch Day series, focused on resiliency and adaptation. Hear from Adrian Trömel, Chief Innovation Officer at Rice University; Eric Willman, Executive Director of the Rice WaTER Institute; pitches from 10 Greentown startups; and more.

This event is Thursday, Dec. 4, from 1-3:30 p.m. at the Ion. The Ion Holiday Block Party follows. Register here.

Dec. 8 — Pumps & Pipes Annual Event 2025

The annual gathering brings together cross-industry leaders in aerospace, energy and medicine for engaging discussions and networking opportunities. Connor Grennan, Chief AI Architect at the NYU Stern School of Business, will present this year's keynote address, "Practical Strategies to Increase Productivity." Other sessions will feature leaders from Cena Research Institute, NASA Ames Research Center, ExxonMobil, Southwest Airlines, and more.

This event is Monday, Dec. 8, from 8 a.m.-5 p.m., at TMC Helix Park. Register here.

Dec. 9 — Energy in Action Seminar

The Energy Transition Institute hosts a monthly Energy in Action Seminar focused on the digitization of the global energy transition. This month's topic is "Exploring AI’s Impact on the Fuels & Petrochemicals Industry," featuring speaker Leo Chiang, Senior Director of Corporate Technology at The Lubrizol Corporation. The event includes a one-hour talk followed by an hour of networking.

This event is Dec. 9 from 4-6 pm at the University of Houston.

Dec. 9-10 — Energy LIVE 2025

Energy LIVE is Reuters Events' flagship conference and expo that brings the full energy ecosystem together under one roof in Houston to solve the industry's most urgent commercial and operational challenges. The event will feature 3,000-plus senior executives across three strategic stages, a showcase of 75-plus exhibitors, and six strategic content pillars.

This event is Dec. 9-10 at NRG Park. Register here.

Dec. 11-12 — Fundamentals of The Texas ERCOT Electric Power Market

This two-day seminar provides a comprehensive overview of the structure, function, and current status of the Texas ERCOT ISO. Attendees will gain an understanding of the dynamic Texas wholesale and retail competitive markets, and learn how these markets interface with ERCOT ISO energy auctions and ISO operations. This two-day event will also address the rapidly expanding new market opportunities in Texas renewables, distributed generation, demand response, and demand side management, and more.

This event is Dec. 11-12 at the Courtyard Marriott Houston near the Galleria. Register here.

Dec. 9-11 — AST Conference & Trade Show

The 18th Annual National Aboveground Storage Tank (AST) Conference & Trade Show is the premier event for professionals in storage tank and terminal operations. Join industry leaders and experts for a three-day conference providing regulatory updates, technical insights, hands-on learning, and networking opportunities.

This event is Dec. 9-12 at The Woodlands Waterway Marriott. Register here.

Houston scientists develop 'recharge-to-recycle' reactor for lithium-ion batteries

reduce, recharge, recycle

Engineers at Rice University have developed a cleaner, innovative process to turn end-of-life lithium-ion battery waste into new lithium feedstock.

The findings, recently published in the journal Joule, demonstrate how the team’s new “recharge-to-recycle” reactor recharges the battery’s waste cathode materials to coax out lithium ions into water. The team was then able to form high-purity lithium hydroxide, which was clean enough to feed directly back into battery manufacturing.

The study has major implications for the electric vehicle sector, which significantly contributes to the waste stream from end-of-life battery packs. Additionally, lithium tends to be expensive to mine and refine, and current recycling methods are energy- and chemical-intensive.

“Directly producing high-purity lithium hydroxide shortens the path back into new batteries,” Haotian Wang, associate professor of chemical and biomolecular engineering, co-corresponding author of the study and co-founder of Solidec, said in a news release. “That means fewer processing steps, lower waste and a more resilient supply chain.”

Sibani Lisa Biswal, chair of Rice’s Department of Chemical and Biomolecular Engineering and the William M. McCardell Professor in Chemical Engineering, also served as co-corresponding author on the study.

“We asked a basic question: If charging a battery pulls lithium out of a cathode, why not use that same reaction to recycle?” Biswal added in the release. “By pairing that chemistry with a compact electrochemical reactor, we can separate lithium cleanly and produce the exact salt manufacturers want.”

The new process also showed scalability, according to Rice. The engineers scaled the device to 20 square centimeters, then ran a 1,000-hour stability test and processed 57 grams of industrial black mass supplied by industry partner Houston-based TotalEnergies. The results produced lithium hydroxide that was more than 99 percent pure. It also maintained an average lithium recovery rate of nearly 90 percent over the 1,000-hour test, showing its durability. The process also worked across multiple battery chemistries, including lithium iron phosphate, lithium manganese oxide and nickel-manganese-cobalt variants.

Looking ahead, the team plans to scale the process and consider ways it can sustain high efficiency for greater lithium hydroxide concentrations.

“We’ve made lithium extraction cleaner and simpler,” Biswal added in the release. “Now we see the next bottleneck clearly. Tackle concentration, and you unlock even better sustainability.