The U.S. Department of Energy funding is earmarked for the new HyVelocity Hub. Photo via Getty Images

The emerging low-carbon hydrogen ecosystem in Houston and along the Texas Gulf Coast is getting as much as a $1.2 billion lift from the federal government.

The U.S. Department of Energy funding, announced November 20, is earmarked for the new HyVelocity Hub. The hub — backed by energy companies, schools, nonprofits, and other organizations — will serve the country’s biggest hydrogen-producing area. The region earns that status thanks to more than 1,000 miles of dedicated hydrogen pipelines and almost 50 hydrogen production plants.

“The HyVelocity Hub demonstrates the power of collaboration in catalyzing economic growth and creating value for communities as we build a regional hydrogen economy that delivers benefits to Gulf Coast communities,” says Paula Gant, president and CEO of Des Plaines, Illinois-based GTI Energy, which is administering the hub.

HyVelocity, which aims to become the largest hydrogen hub in the country, has already received about $22 million of the $1.2 billion in federal funding to kickstart the project.

Organizers of the hydrogen project include:

  • Arlington, Virginia-based AES Corp.
  • Air Liquide, whose U.S. headquarters is in Houston
  • Chevron, which is moving its headquarters to Houston
  • Spring-based ExxonMobil
  • Lake Mary, Florida-based Mitsubishi Power Americas
  • Denmark-based Ørsted
  • Center for Houston’s Future
  • Houston Advanced Research Center
  • University of Texas at Austin

The hub’s primary contractor is HyVelocity LLC. The company says the hub could reduce carbon dioxide emissions by up to seven million metric tons per year and create as many as 45,000 over the life of the project.

HyVelocity is looking at several locations in the Houston area and along the Gulf Coast for large-scale production of hydrogen. The process will rely on water from electrolysis along with natural gas from carbon capture and storage. To improve distribution and lower storage costs, the hub envisions creating a hydrogen pipeline system.

Clean hydrogen generated by the hub will help power fuel-cell electric trucks, factories, ammonia plants, refineries, petrochemical facilities, and marine fuel operations.

Greentown Houston celebrated two new automation from its corporate partners. Photo via Greentown Labs/LinkedIn

Greentown Houston onboards automation tools from 2 corporate partners

new equipment

Houston’s Greentown Labs announced new resources and equipment for its members thanks to two corporate partnerships.

Greentown Houston is now home to new tools from Emerson and Puffer to help members implement strong foundations for access to contextualized data.

Automation is the theme with the latest resources, as the process assists with a startup's journey to “standardization and scalability” according to a news release from Greentown Labs. Members will have access to these two units and platforms. The DeltaV Automation Platform is a data-driven decision-making resource that aims to improve operational performance while reducing risks, costs, and downtime. It integrates real-time analytics, advanced automation solutions, sophisticated control systems, and lifecycle services.

Puffer-Sweiven is a localized, single point of contact for sales, service, and applied engineering for Emerson Automation Solutions in the Texas Gulf Coast and Central Texas area with the capabilities to combine with other members in North America to leverage global reach and technologies. Puffer is an Emerson Impact Partner.

Greentown Labs members will have access to the two new automation tools. Photo via Greentown Labs/LinkedIn

With access to the two units, Greentown Labs member companies can further explore easy-to-use, integrated-by-design DeltaV Distributed Control System. With the system, companies and members can better scale new technologies into pilot scale, optimize processes for high quality products, and implement a smart foundation for access to contextualized data. Global ROC is one company that is already utilizing the new resources at Greentown Labs.

“Our member Global ROC, which is developing a solution for cooling tower systems that reduces chemical consumption, saves water, and reduces energy costs, plans to use the system in two ways,” Global ROC CEO Ely Trujillo said to Greentown Labs via LinkedIn.

The startup will be able to create a control method that can be applied to future projects by using and comparing Global ROC’s products with the Delta V’s advanced function blocks. Trujilloalso plans to train team members to set up a Proportional Integral Derivative (PID) controller. The PID involves building a lab test box that connects to the DeltaV’s CHARM modules to control a process to a temperature by varying amperage through the DeltaV’s PID controller.

As part of the 3-year kickoff of the Texas Exchange for Energy and Climate Entrepreneurship (TEX-E), Greentown Labs also celebrated 87 Texas students from The University of Texas at Austin, Texas A&M University, University of Houston, Rice University, Prairie View A&M University, and the Massachusetts Institute of Technology have been accepted into this year's Fellowship. The students will gain access to hands-on experiences including internships, pitch competitions, entrepreneurship bootcamps, courses, and conferences geared to help the climate and energy-transition innovation field.

In March, Greentown Labs and Browning the Green Space were named the newest accelerator for the Advancing Climatetech and Clean Energy Leaders Program, or ACCEL. The seven selected startups will have a year-long curated curriculum, incubation at Greentown's two locations, and a non-dilutive $25,000 grant.
Learn more about the specific missions the Houston Energy Transition Initiative is focused on — from carbon management to finding funding. Photo via htxenergytransition.com

Houston: Where energy leaders create a low-carbon future

the view from heti

Houston is the energy capital of the world, and it faces a dual challenge: fulfilling growing global energy demand while actively reducing carbon dioxide emissions.

This is why energy leaders have come together at the Houston Energy Transition Initiative, within the Greater Houston Partnership, to strengthen the region’s position for an energy-abundant, low-carbon future. HETI’s impact work is conducted through sector-specific working groups that leverage Houston’s competitive advantage. These working groups include: Carbon Capture, Use and Storage (CCUS), Clean Hydrogen, Capital Formation, Power Management, and Industry Decarbonization.

Texas Gulf Coast as a hub for carbon management

The International Energy Agency (IEA) states that CCUS is a requirement to any realistic pathway to a low-carbon, even net-zero future. This is especially true in the Houston area, which is home to one of the nation’s largest concentrated sources of carbon dioxide. Houston has the geology, knowledge, and infrastructure to support CCUS at scale. The CCUS Working Group at HETI supports key policy enablers of scaling CCUS, including supporting the state to earn permitting authority (primacy) over carbon capture (Class VI) wells. The working group is also analyzing the cumulative impacts of carbon capture on the region’s existing infrastructure and identifying key infrastructure needs for CCUS to reach scale.

Gulf Coast preparing for clean hydrogen liftoff

The Clean Hydrogen working group has created an ecosystem for Houston to lead the clean hydrogen market. The Texas Gulf Coast region is currently home to the world’s largest hydrogen system. By assessing the impact of hydrogen on the economy and the environment, this working group is positioning Houston to be a leading clean hydrogen hub.

Houston as a leader in Industry decarbonization

Houston needs technologies including but not limited to clean hydrogen and CCUS for decarbonization. The HETI Decarbonization Working Group partners with the Mission Possible Partnership and Rocky Mountain Institute to provide a measurable baseline of emissions and identify recommendations for decarbonization pathways in the Houston region.

An energy-abundant, low-carbon future will impact our region’s power management

It is expected that there will be changes in supply and demand of electricity associated with proposed energy transition and decarbonization projects in the Houston area. HETI has partnered with Mission Possible Partnership and Rocky Mountain Institute to assess the impact of energy transition and decarbonization on the growth and resilience of Houston’s regional power grid and the transmission and distribution of energy.

Making Houston a hub for energy transition finance

Financing energy projects is extremely capital intensive. Houston currently serves as a hub for implementing new technologies, and it has the potential to become a major center for financing innovative energy solutions. This includes everything from more efficient, lower-carbon production of existing resources to technological breakthroughs in energy efficiency, renewables, energy storage, and nature-based solutions. For technological breakthroughs, Houston needs a consistent flow of capital to the region, including sources and financing models from venture capital to growth capital, to debt markets and government grants. HETI’s Capital Formation Working Group has mapped inflows and outflows of capital for the energy transition in Houston and found that we need to grow Houston’s capital inflows ten times by 2040 to $150 billion per year to lead the transition. The Working Group regularly convenes for learning sessions on capital markets.

Over the last year, HETI’s working groups have moved from strategy to impact. To learn more about the outcomes of these working groups, check out these resources.

------

This article originally ran on the Greater Houston Partnership's Houston Energy Transition Initiative blog. HETI exists to support Houston's future as an energy leader. For more information about the Houston Energy Transition Initiative, EnergyCapitalHTX's presenting sponsor, visit htxenergytransition.org.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston-based co. closes acquisition of 50 percent stake in Texas cogeneration facility

M&A Moves

Fengate Asset Management announced the financial close on the acquisition of a 50 percent interest in Freeport Power Limited, which owns a 440-megawatt cogeneration facility in Freeport, Texas.

FPL is located near the Freeport Energy Center, which is a 260-megawatt cogeneration facility that is currently owned and managed by Fengate. The two facilities work to provide cost-effective power and steam to Dow’s Freeport site, which is the largest integrated chemical manufacturing complex in the Western Hemisphere.

“We are thrilled to have closed this acquisition, which aligns with our strategy of acquiring behind-the-meter cogeneration projects with strong industrial partners like Dow,” Greg Calhoun, managing director of Infrastructure Investments at Fengate, says in a news release.

Fengate was able to acquire interest in FPL under a strategic operating partnership with asset manager Ironclad Energy. The partnership with Ironclad was established in 2022 to acquire and operate cogeneration, district energy and other power generation projects throughout North America.

“This is our second acquisition with Fengate, and we look forward to continuing our partnership to optimize and expand the portfolio,” Christopher Fanella, president and CFO of Ironclad Energy, says in the release.

Fengate opened its first U.S. office in 2017 in Houston.

“Combined heat and power projects like FPL will continue to play an important role in the U.S. power industry – especially for hard-to-abate industrial sectors – to ensure reliability, efficiency and affordability,” adds in the release.

Houston energy leader on why the future of fuels is more than electric vehicles

guest column

Gasoline, diesel, bunker fuel, and jet fuel. Four liquid hydrocarbons that have been powering transportation for the last 100-plus years.

Gas stations, truck stops, ports, and airport fuel terminals have been built up over the last century to make transportation easy and reliable.

These conventional fuels release Greenhouse Gases (GHG) when they are used, and governments all over the world are working on plans to shift towards cleaner fuels in an effort to lower emissions and minimize the effects of climate change.

For passenger cars, it’s clear that electricity will be the cleaner fuel type, with most countries adopting electric vehicles (EVs), and in some cases, providing their citizens with incentives to make the switch.

While many articles have been written about EVs and the benefits that come along with them, they fail to look at the transportation system as a whole.

Trucks, cargo ships, and airplanes are modes of transportation that are used every day, but they don’t often get the spotlight like EVs do.

For governments to be effective in curbing transportation-related greenhouse emissions, they must consider all forms of transportation and cleaner fuel options for them as well.

43 percent of GHG emissions comes from these modes of transportation. Therefore, using electricity to reduce GHG emissions in light duty vehicles only accounts for part of the total transportation emissions equation.

The path to cleaner fuels for these transportation modes has its challenges.

According to Ed Emmett, Fellow in Energy and Transportation Policy at the Baker Institute Center for Energy Studies (CES);

  • "Airplanes cannot be realistically powered by electricity, at least not currently, and handle the same requisite freight and passenger loads"
  • "The long-haul trucking industry [...] pushed back against electrification as being impractical due to the size and weight of batteries, their limited range, and the cost of adoption"
  • "Shipowners have expressed reluctance to scrap existing bunker fueled ships for newer, more expensive ships, especially when other fueling options, e.g. biofuels and hydrocarbon derivatives-for fleets can be made available"

Finding low-cost, reliable, and environmentally sound fuels for the various segments of transportation is complex. As Emmett suggests in his latest article;

"Hovering over the transition to other fuels for almost every transportation mode is the question of dependability of supply. For the trucking industry, the truck stop industry must be able to adapt to new fuel requirements. For ocean shipping, ports must be able to meet the fuel needs of new ships. Airlines, air cargo carriers and airports need to be on the same page when it comes to aviation fuels. In other words, the adoption equation in transitions in transportation is not only a function of the availability and cost of the new technology but also a function of the cost of the full supply chain needed to support fuel production and delivery to the point of use. Going forward, the transportation industry is facing a dilemma: How are environmental concerns addressed while simultaneously maintaining operational efficiency and avoiding unnecessary upward cost shifts for moving goods and people? In answering that question, for the first time in history, modes of transportation may end up going in multiple different directions when it comes to the fuels each mode ultimately chooses."

This is why many forecasts predict that hydrocarbon demand will continue through 2050, despite ambitious aspirations of achieving net zero emissions by that year. The McKinsey "slow evolution" scenario has global liquid hydrocarbon demand in 2050 at 92mmb/d versus 103 mmb/d in 2023. With their "continued momentum" scenario, oil demand is 75 mmb/d. Proportionally, global oil demand related to GHG emissions from transportation would decline 11-27 percent. The global uptake of EVs is the primary driver of uncertainty around future oil demand. In all the McKinsey scenarios, the share of EVs in passenger cars sales is expected to be above 90 percent by 2050.

The Good News

Despite the relatively slow progress expected for reducing GHG emissions in the global transportation sector, there are solutions emerging that lower the carbon footprint tied to traditional petroleum-based fuels. Emmett highlights some of the methods under study, noting that "sustainable biofuels sourced from cooking oils, animal fats, and agriculture products, as well as hydrogen, methanol, ammonia, and various e-fuels are among the options being tested. Some ocean carriers are already ordering ships powered by liquified natural gas, bio-e-methanol, bio/e-methane, ammonia, and hydrogen. Airlines are already using sustainable aviation fuel as a supplement to basic aviation fuel. Railroads are testing hydrogen locomotives. The trucking industry is decarbonizing local delivery by using vehicles powered by electricity, compressed natural gas, and sustainable diesel. Long-haul trucking companies are considering sustainable diesel as a drop-in fuel for existing equipment, and fuel suppliers are researching new engines fueled by hydrogen and other alternative fuels."

Most of these options will require a combination of increased government incentives, along with advancements in technology and cost reductions.

McKinsey's "sustainable transformation" scenario, which considers potential shifts in government regulations as well as advancements in technology and cost, suggests there is moderate growth in alternative fuels alongside growth in EVs. Mckinsey projects;

  • EV demand could grow to over 90 percent of total passenger car sales by 2050
  • EVs to make up around 80 percent of commercial truck sales by 2050
  • In aviation, low carbon fuels such as biofuels, synfuels, hydrogen and electricity are projected to grow to 49 percent by 2050.

According to McKinsey, the combination of these alternatives along with demand changes in power and chemicals could reduce global oil demand to 60 mmb/d in 2050. The shift to cleaner fuels, for modes of transportation other than EVs, is underway but the progress and adoption will take decades to achieve according to McKinsey’s forecasts.

Looking more closely at EVs, the story may not be as dire globally as it seems to be in the West. While the U.S. appears to be losing momentum on electric vehicle adoption, China is roaring ahead. New electric car registrations in China reached 8.1 million in 2023, increasing by 35 percent relative to 2022. McKinsey’s forecasts have underestimated global EV sales in the past, with China surpassing their estimates, while the U.S. lags behind. It’s clear that China is the winner in EV adoption; could they also lead the way to adopt cleaner fuels for other modes of transport? That is something governments and the transportation industry will be watching in the years ahead.

Conclusion

While we are not on a trajectory to meet the aspirations to reduce global GHG emissions in the transportation sector, there are emerging solutions that could be adopted should governments around the world decide to put in place the incentives to get there. Moving forward, the future of transportation fuels will be shaped by a mix of innovation, government policies, and what consumers want. The focus will be on ensuring that the transportation sector remains reliable, secure, and economically robust, while also reducing GHG emissions. But, decarbonizing the transportation sector is much more than just EV's – it's a broader effort that will require continued global progress in each of the multiple transportation segments.

------------

Scott Nyquist is a senior advisor at McKinsey & Company and vice chairman, Houston Energy Transition Initiative of the Greater Houston Partnership. The views expressed herein are Nyquist's own and not those of McKinsey & Company or of the Greater Houston Partnership. This article originally ran on LinkedIn on October 9, 2024.

Houston company secures $10M contract to deliver subsea well decommissioning solution

big deal

Houston energy services provider Expro was awarded a contract valued at over $10 million for the provision of a well decommissioning solution.

The solution will combine subsea safety systems and surface processing design that can enable safe entry to the well and management of well fluids.

“The contract reinforces our reputation as the leading provider of subsea safety systems and surface well test equipment, including within the P&A sector,” Iain Farley, Expro’s regional vice president for Europe and Sub-Saharan Africa, says in a news release. "It demonstrates our commitment to delivering best-in-class equipment, allied with the highest standards of safety and service quality that Expro is renowned for.”

Expro will provide from its global support hub in Aberdeen, a surface fluid management package and a market-leading 7-3/8 inch large-bore subsea test tree assembly (SSTTA). This will include surface tree and controls that can provide dual barrier and disconnect capability to facilitate re-entry into the subsea wells.

Expro has been supplying its subsea safety systems and well test equipment to the construction of many of the 52 wells now being plugged and abandoned.

“Having been involved in the development phase for many of these fields, we have gained a life of well experience that will be invaluable for this P&A campaign,” Farley adds. “Our expertise and know-how will help deliver key technical and commercial benefits for the client across the project.”