20-plus companies will pitch at Energy Tech Nexus' Pilotathon during Houston Energy & Climate Startup Week. Photo via Getty Images.

Energy Tech Nexus will host its Pilotathon and Showcase as part of Houston Energy & Climate Startup Week next Tuesday, Sept. 16, featuring insightful talks from industry leaders and pitches from an international group of companies in the clean energy space.

This year's event will center around the theme "Energy Access and Resilience." Attendees will hear pitches from nine Pilotathon pitch companies, as well as the 14 companies that were named to Energy Tech Nexus' COPILOT accelerator earlier this year.

COPILOT partners with Browning the Green Space, a nonprofit that promotes diversity, equity and inclusion (DEI) in the clean energy and climatetech sectors. The Wells Fargo Innovation Incubator (IN²) at the National Renewable Energy Laboratory backs the COPILOT accelerator, where companies are tasked with developing pilot projects for their innovations.

The nine Pilotathon pitch companies include:

  • Ontario-based AlumaPower, which has developed a breakthrough technology that converts the aluminum-air battery into a "galvanic generator," a long-duration energy source that runs on aluminum as a fuel
  • Calgary-based BioOilSolv, a chemical manufacturing company that has developed cutting-edge biomass-derived solvents
  • Atlanta-based Cultiv8 Fuels, which creates high-quality renewable fuel products derived from hemp
  • Newfoundland-based eDNAtec Inc., a leader in environmental genomics that analyzes biodiversity and ecological health
  • Oregon-based Espiku Inc., which designs and develops water treatment and mineral extraction technologies that rely on low-pressure evaporative cycles
  • New York-based Fast Metals Inc., which has developed a chemical process to extract valuable metals from complex toxic mine tailings that is capable of producing iron, aluminum, scandium, titanium and other rare earth elements using industrial waste and waste CO2 as inputs
  • New Jersey-based Metal Light Inc., which is building a circular, solid metal fuel that will serve as a replacement for diesel fuel
  • Glasgow-based Novosound, which designs and manufactures innovative ultrasound sensors using a thin-film technique to address the limitations of traditional ultrasound with applications in industrial, medical and wearable markets
  • Calgary-based Serenity Power, which has developed a cutting-edge solid oxide fuel cell (SOFC) technology

The COPILOT accelerator companies include:

  • Accelerate Wind
  • Aquora Biosystems Inc.
  • EarthEn
  • Electromaim
  • EnKoat
  • GeoFuels
  • Harber Coatings Inc.
  • Janta Power
  • NanoSieve
  • PolyQor Inc.
  • Popper Power
  • Siva Powers America
  • ThermoShade
  • V-Glass Inc.

Read more about them here.

The Pilotathon will also include a keynote from Taylor Chapman, investment manager at New Climate Ventures; Deanna Zhang, CEO at V1 Climate Solutions; and Jolene Gurevich, director of fellowship experience at Breakthrough Energy. The Texas Climate Tech Collective will present its latest study on the Houston climate tech and innovation ecosystem.

CEOs Moji Karimi of Cemvita, Laureen Meroueh of Hertha Metals and others will also participate in a panel on successful pilots. Investors from NetZero Ventures, Halliburton Labs, Chevron, Saudi Aramco, Prithvi VC and other organizations will also be on-site. Find registration information here.

The Texas Climate Tech Collective issued its 2023 report tracking Houston's progress as a climatetech hub. Photo via Getty Images

Report evaluates Houston's potential as a climatetech hub with 6 key takeaways

seeing green

Three Houston energy tech innovators sought to quantify Houston's growth as an energy tech ecosystem, and, after 200 survey respondents and dozens of interviews, they've created six calls to action for the city.

Taylor Chapman, Gabe Malek, and Deanna Zhang created the Texas Climate Tech Collective to issue the Houston's Climate Tech Ecosystem 2023 report. The trio revealed some of its key takeaways at Greentown Houston's Climatetech Summit last month.

"We wanted to understand how the city has evolved," Malek, who's also chief of staff at Fervo Energy, said at the event. "We went into this project with a shared belief that Houston has unique characteristics that set it apart from the other cities thinking about climate, and if we could really lean into those characteristics, develop them, and amplify them, we could help grow the ecosystem in Houston and build climate solutions ... to accelerate the energy transition."

The full report, which is available online, highlighted six key takeaways paired with six action items.

1. "Houston has a perception problem."

Houston is known as a leader in the energy industry, which positions it well in a lot of ways, but in other ways, as Zhang points out, Houston might be being left out.

"People in this community like to talk about energy because we are the energy capital of the world, so we use a lot of energy-centric terms," she says, using "energy transition" as an example. "We don't use the word climate enough."

It might just be semantics, but it could be a reason the city isn't as regarded as a climatetech leader.

"If other ecosystems are using 'climate' and 'climatetech,' we need to be using these terms," she continues. "It's like SEO but for the ecosystem."

2. "Houston needs more risk capital, especially at the earlier stages." 

Money is a huge factor, which comes as no surprise. While the city has a lot of corporations and private equity here, as Zhang explains, there seems to be room for improvement for early-stage resources.

"If you're a founder raising pre-seed, seed, or even series A, often times you have to go outside of Houston to meet those investors," she says.

According to the report, about half of survey respondents chose "access to venture capital" as one of the biggest challenges facing the ecosystem.

3. "Houston’s startup scene has improved radically."

The report found that 80 percent of responders agreed to the statement: “the ecosystem has improved dramatically over the last 5 years.” Meanwhile, 75 percent of respondents agreed that “Houston is more innovative than outsiders perceive it to be."

So what's holding the city back? According to the collective, "Shameless self-promotion of ecosystem accomplishments."

"We need to be shouting from the rooftops what is happening in this city. It's really a PR game," Zhang says.

4. "Houston’s energy resources and infrastructure have massive potential to create change, but are underutilized by the climate ecosystem."

The collective and survey respondents acknowledge that Houston has a lot of infrastructure already in place, but the call to action is for coordination of these resources.

"Greentown, Ion, Halliburton Labs, HETI — the list goes on and on, but people don't know where to start," Chapman says.

The report says the city's resources are "woefully undertapped" and "29 percent of respondents highlighted partnerships, coordination of existing assets, and Houston’s own future investments in infrastructure as potential accelerants to growth."

5. "Houston’s strong workforce and human capital are one of its greatest strengths – and it should be investing in transitioning that workforce to new opportunities."

Cultivating the workforce for the energy transition needs to be a major priority, according to the collective. The city has a talented workforce for engineering, technical, and project management talent.

"How do we reach and transition this workforce?" Chapman asks. "It's a huge opportunity and critical for Houston to ensure that its economic development continues to grow."

6. "Houston knows how to build...but needs to put expertise that towards climate innovation."

Houston as a major, sprawling city needs to continue to become "greener" in every way. While Chapman praises the city has done with its Climate Action Plan, Houston still lags other major cities like Los Angeles and New York in this way, per the report. Fourteen percent of respondents cited better climate-friendly infrastructure as a priority issue.

Chapman urged the audience to get involved locally to move the needle on more green initiatives for the city.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

What EPA’s carbon capture and storage permitting announcement means for Texas

The View From HETI

Earlier this month, Texas was granted authority by the federal government for permitting carbon capture and storage (CCS) projects. This move could help the U.S. cut emissions while staying competitive in the global energy game.

In June, the U.S. Environmental Protection Agency (EPA) proposed approving Texas’ request for permitting authority under the Safe Drinking Water Act (SDWA) for Class VI underground injection wells for carbon capture and storage (CCS) in the state under a process called “primacy.” The State of Texas already has permitting authority for other injection wells (Classes I-V). In November, the EPA announced final approval of Texas’ primacy request.

Why This Matters for Texas

Texas is the headquarters for virtually every segment of the energy industry. According to the U.S. Energy Information Administration, Texas is the top crude oil- and natural-gas producing state in the nation. The state has more crude oil refineries and refining capacity than any other state in the nation. Texas produces more electricity than any other state, and the demand for electricity will grow with the development of data centers and artificial intelligence (AI). Simply put, Texas is the backbone of the nation’s energy security and competitiveness. For the nation’s economic competitiveness, it is important that Texas continue to produce more energy with less emissions. CCS is widely regarded as necessary to continue to lower the emissions intensity of the U.S. industrial sector for critical products including power generation, refining, chemicals, steel, cement and other products that our country and world demand.

The Greater Houston Partnership’s Houston Energy Transition Initiative (HETI) has supported efforts to bring CCUS to a broader commercial scale since the initiative’s inception.

“Texas is uniquely positioned to deploy CCUS at scale, with world-class geology, a skilled workforce, and strong infrastructure. We applaud the EPA for granting Texas the authority to permit wells for CCUS, which we believe will result in safe and efficient permitting while advancing technologies that strengthen Texas’ leadership in the global energy market,” said Jane Stricker, Executive Director of HETI and Senior Vice President, Energy Transition at the Greater Houston Partnership.

What is Primacy, and Why is it Important?

Primacy grants permitting authority for Class VI wells for CCS to the Texas Railroad Commission instead of the EPA. Texas is required to follow the same strict standards the EPA uses. The EPA has reviewed Texas’ application and determined it meets those requirements.

Research suggests that Texas has strong geological formations for CO2 storage, a world-class, highly skilled workforce, and robust infrastructure primed for the deployment of CCS. However, federal permitting delays are stalling billions of dollars of private sector investment. There are currently 257 applications under review, nearly one-quarter of which are located in Texas, with some applications surpassing the EPA’s target review period of 24 months. This creates uncertainty for developers and investors and keeps thousands of potential jobs out of reach. By transferring permitting to the state, Texas will apply local resources to issue Class VI permits across the states in a timely manner.

Texas joins North Dakota, Wyoming, Louisiana, West Virginia and Arizona with the authority for regulating Class VI wells.

Is CCS safe?

A 2025 study by Texas A&M University reviewed operational history and academic literature on CCS in the United States. The study analyzed common concerns related to CCS efficacy and safety and found that CCS reduces pollutants including carbon dioxide, particulate matter, sulfur oxides and nitrogen oxides. The research found that the risks of CCS present a low probability of impacting human life and can be effectively managed through existing state and federal regulations and technical monitoring and safety protocols.

What’s Next?

The final rule granting Texas’ primacy will become effective 30 days after publication in the Federal Register. Once in effect, the Texas Railroad Commission will be responsible for permitting wells for carbon capture, use and storage and enforcing their safe operation.

———

This article originally ran on the Greater Houston Partnership's Houston Energy Transition Initiative blog. HETI exists to support Houston's future as an energy leader. For more information about the Houston Energy Transition Initiative, EnergyCapitalHTX's presenting sponsor, visit htxenergytransition.org.

Houston energy expert: How the U.S. can turn carbon into growth

Guets Column

For the past 40 years, climate policy has often felt like two steps forward, one step back. Regulations shift with politics, incentives get diluted, and long-term aspirations like net-zero by 2050 seem increasingly out of reach. Yet greenhouse gases continue to rise, and the challenges they pose are not going away.

This matters because the costs are real. Extreme weather is already straining U.S. power grids, damaging homes, and disrupting supply chains. Communities are spending more on recovery while businesses face rising risks to operations and assets. So, how can the U.S. prepare and respond?

The Baker Institute Center for Energy Studies (CES) points to two complementary strategies. First, invest in large-scale public adaptation to protect communities and infrastructure. Second, reframe carbon as a resource, not just a waste stream to be reduced.

Why Focusing on Emissions Alone Falls Short

Peter Hartley argues that decades of global efforts to curb emissions have done little to slow the rise of CO₂. International cooperation is difficult, the costs are felt immediately, and the technologies needed are often expensive. Emissions reduction has been the central policy tool for decades, and it has been neither sufficient nor effective.

One practical response is adaptation, which means preparing for climate impacts we can’t avoid. Some of these measures are private, taken by households or businesses to reduce their own risks, such as farmers shifting crop types, property owners installing fire-resistant materials, or families improving insulation. Others are public goods that require policy action. These include building stronger levees and flood defenses, reinforcing power grids, upgrading water systems, revising building codes, and planning for wildfire risks. Such efforts protect people today while reducing long-term costs, and they work regardless of the source of extreme weather. Adaptation also does not depend on global consensus; each country, state, or city can act in its own interest. Many of these measures even deliver benefits beyond weather resilience, such as stronger infrastructure and improved security against broader threats.

McKinsey research reinforces this logic. Without a rapid scale-up of climate adaptation, the U.S. will face serious socioeconomic risks. These include damage to infrastructure and property from storms, floods, and heat waves, as well as greater stress on vulnerable populations and disrupted supply chains.

Making Carbon Work for Us

While adaptation addresses immediate risks, Ken Medlock points to a longer-term opportunity: turning carbon into value.

Carbon can serve as a building block for advanced materials in construction, transportation, power transmission, and agriculture. Biochar to improve soils, carbon composites for stronger and lighter products, and next-generation fuels are all examples. As Ken points out, carbon-to-value strategies can extend into construction and infrastructure. Beyond creating new markets, carbon conversion could deliver lighter and more resilient materials, helping the U.S. build infrastructure that is stronger, longer-lasting, and better able to withstand climate stress.

A carbon-to-value economy can help the U.S. strengthen its manufacturing base and position itself as a global supplier of advanced materials.

These solutions are not yet economic at scale, but smart policies can change that. Expanding the 45Q tax credit to cover carbon use in materials, funding research at DOE labs and universities, and supporting early markets would help create the conditions for growth.

Conclusion

Instead of choosing between “doing nothing” and “net zero at any cost,” we need a third approach that invests in both climate resilience and carbon conversion.

Public adaptation strengthens and improves the infrastructure we rely on every day, including levees, power grids, water systems, and building standards that protect communities from climate shocks. Carbon-to-value strategies can complement these efforts by creating lighter, more resilient carbon-based infrastructure.

CES suggests this combination is a pragmatic way forward. As Peter emphasizes, adaptation works because it is in each nation’s self-interest. And as Ken reminds us, “The U.S. has a comparative advantage in carbon. Leveraging it to its fullest extent puts the U.S. in a position of strength now and well into the future.”

-----------

Scott Nyquist is a senior advisor at McKinsey & Company and vice chairman, Houston Energy Transition Initiative of the Greater Houston Partnership. The views expressed herein are Nyquist's own and not those of McKinsey & Company or of the Greater Houston Partnership. This article originally appeared on LinkedIn.

UH launches new series on AI’s impact on the energy sector

where to be

The University of Houston's Energy Transition Institute has launched a new Energy in Action Seminar Series that will feature talks focused on the intersection of the energy industry and digitization trends, such as AI.

The first event in the series took place earlier this month, featuring Raiford Smith, global market lead for power & energy for Google Cloud, who presented "AI, Energy, and Data Centers." The talk discussed the benefits of widespread AI adoption for growth in traditional and low-carbon energy resources.

Future events include:

“Through this timely and informative seminar series, ETI will bring together energy professionals, researchers, students, and anyone working in or around digital innovation in energy," Debalina Sengupta, chief operating officer of ETI, said in a news release. "We encourage industry members and students to register now and reap the benefits of participating in both the seminar and the reception, which presents a fantastic opportunity to stay ahead of industry developments and build a strong network in the Greater Houston energy ecosystem.”

The series is slated to continue throughout 2026. Each presentation is followed by a one-hour networking reception. Register for the next event here.