All three of Intersect Power's storage systems — Lumina I, Lumina II, and Radian — are expected to be online this year. Photo courtesy of Intersect

Houston-based clean energy company Intersect Power has wrapped up $837 million in financing for the construction and operation of three standalone battery energy storage systems in Texas.

The money came in the form of debt financing, construction debt, and tax equity. The projects qualify for tax credits under the federal Inflation Reduction Act. Backers of the financing include Deutsche Bank, Morgan Stanley, and affiliates of HPS Investment Partners.

All three storage systems — Lumina I, Lumina II, and Radian — are expected to be online this year. Each system will be capable of storing 320 megawatts of solar power with a two-hour duration.

“Batteries will be a vital part of the energy transition and are the perfect complement to the billions of dollars of solar generation that we are building in California and Texas,” Sheldon Kimber, founder and CEO of Intersect, says in a news release.

Kimber says the storage systems will help Intersect Power triple the size of its portfolio over the next three years.

Intersect’s portfolio features 2.2 gigawatts of solar projects that are already operating, and 2.4 gigawatt hours of storage being operated or built. The company was founded in 2016.

Intersect recently signed a deal with Tesla Energy for 15.2 gigawatt hours of Megapack battery energy storage systems. The contract, which will deliver systems for Intersect projects in Texas and California, ends in 2030.

Empact’s goal is to help energy companies maximize the tax credits for their clean energy projects. Photo courtesy of Empact

Houston software company equips green project developers with IRA compliance tools

Tax credits, anyone?

A Houston company has an update to its first-of-its-kind software to assist emerging technology and energy companies with Inflation Reduction Act Energy Community Bonus Credit compliance management and reporting requirements for renewable energy projects.

Empact Technologies has released a software update that incorporates support for the latest IRA Energy Community Bonus management and reporting requirements. The new software is provided at no additional cost to existing Empact clients, and is available to qualified communities through a free trial via Empact’s website.

Empact’s goal is to help energy companies maximize the tax credits for their clean energy projects.

“Empact is the first (and only) company that provides technology and services to help the project developers qualify for and ensure compliance with all of those IRA tax incentive compliance requirements,“ CEO Charles Dauber tells EnergyCapital. “We work with project developers of solar, energy storage, carbon capture and sequestration, and other projects in ERCOT and around the country to manage compliance for the PWA, domestic content, and energy community compliance requirements and make sure they have all of the documentation required to prove to the IRS that these tax credits are valid.”

The software is the first in the industry to incorporate the most recent energy community guidelines released by the U.S. Department of the Treasury and the Internal Revenue Service, known as Notice 2024-48. These guidelines outline Energy Community Bonus qualification requirements for the “Statistical Area Category” and the “Coal Closure Category” in Notice 2023-29.

Empact’s platform will provide tax incentive compliance management for all three types of credits, which will be covered in the IRA’s estimated $1.2 trillion in tax incentives. The credits include a base energy project tax incentive (30 percent) for projects that meet prevailing wage and apprenticeship requirements, a domestic content tax adder (10 percent), and an energy community tax adder (10 percent). Notice 2024-48 is able to be used by developers to confirm project qualification for Energy Community Bonus opportunities.

Empact will support clients on eligibility requirements, manage compliance documentation and verification requirements.

“The IRA is considered the greatest and biggest accelerator for clean energy in the U.S.,” Dauber says. “The IRA provides significant tax incentives for developers of solar, energy storage, wind and other clean power technologies, as well as energy transition projects such as carbon capture and sequestration, hydrogen, biofuels and more.”

According to Empact, the way the IRA works is that developers of projects can “generate” tax credits based on meeting certain project requirements. There are three main factors in play:

  1. The foundational element of the tax credits provides a 30 percent tax credit of the project cost if the project meets requirements related to ensuring a fair wage for construction workers and utilizing a certain amount of apprentices on the project (called Prevailing Wage and Apprenticeship). The project developer (all the EPC and all contractors) must provide documentation that every worker has been paid correctly and that all apprenticeship requirements have been met. Some projects have hundreds of workers from 10-plus contractors every week.
  2. The second tax credit relates to the project utilizing steel and iron and other “manufactured products” such as solar modules, that are made in the U.S. If the project meets the “domestic content” requirements, it is eligible for another 10 percent tax credit. Project developers have to prove the products they use are made in the U.S. and there are calculations that must be done to meet the threshold that goes up every year.
  3. The third tax credit is related to the location of the project. The government is trying to incentivize project developers to put projects in locations with high unemployment, or sites that have existing power generation facilities, or are in areas that used to be coal communities. That tax incentive is called “Energy Communities” and provides an additional 10 percent tax credit for the project developers. To qualify for that tax credit, the developer must provide proof that the project is located in an energy community location.

Companies that remain in compliance by using the software will see immediate benefits, and the clean energy industry as a whole will benefit from Empact’s facilitation of tax credit utilization.

“If a developer does this all correctly, they can qualify for tax credits equal to 50 percent of the cost of the project which is an enormous benefit to getting more projects built and encouraging a balanced energy program in the U.S.” Dauber says. “For example, a 100MW solar farm may cost $100 million, and if they meet all of the criteria, they can qualify for $50 million in tax incentives. The same calculations work for carbon capture, hydrogen and other projects as well although there are some slight differences.

Last August, Stella Energy Solutions, a utility-scale solar and storage developer, entered into a multi-year agreement with Empact to use the platform to manage Stella's IRA tax incentives on all its projects for the next five years.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Baker Hughes launches major clean energy initiatives with U.S. military and more

clean team

Energy tech company Baker Hughes announced two major clean energy initiatives this month.

The Houston-based company has teamed up with Dallas-based Frontier Infrastructure to develop carbon capture and storage (CCS), power generation and data center operations in the U.S.

Baker Hughes will supply technology for Frontier’s nearly 100,000-acre CCS hub in Wyoming, which will provide open-access CO2 storage for manufacturers and ethanol producers, as well as future Frontier projects. Frontier has already begun drilling activities at the Wyoming site.

“Baker Hughes is committed to delivering innovative solutions that support increasing energy demand, in part driven by the rapid adoption of AI, while ensuring we continue to enable the decarbonization of the industry,” says Lorenzo Simonelli, chairman and CEO of Baker Hughes.

Additionally, Baker Hughes announced this week that it was selected by the U.S. Air Force and the Department of Defense’s Chief Digital and Artificial Intelligence Office (CDAO) to develop utility-scale geothermal power plants that would power global U.S. military bases.

Baker Hughes was granted an "awardable," or eligible, status through the CDAO's Tradewinds Solutions Marketplace, which aims to accelerate "mission-critical technologies," including AI, machine learning and resilient energy technologies. The potential geothermal plants would provide cost-effective electricity, even during a grid outage.

“The ability of geothermal to provide reliable, secure baseload power makes it an ideal addition to America’s energy mix,” Ajit Menon, vice president of geothermal, oilfield services and equipment at Baker Hughes, said in a news release. “Baker Hughes has been a pioneer in this field for more than 40 years and our unique subsurface-to-surface expertise and advanced technology across the geothermal value chain will help the U.S. military unlock this critical domestic energy source, while simultaneously driving economic growth and energy independence.”

4 Houston inventors named to prestigious national organization

Top Honor

Houston is home to four new senior members of the National Academy of Inventors.

To be eligible to be an NAI Senior Member, candidates must be active faculty, scientists and administrators from NAI member institutions that have demonstrated innovation and produced technologies that have “brought, or aspire to bring, real impact on the welfare of society,” according to the NAI. The members have also succeeded in patents, licensing and commercialization, and educating and mentoring.

The University of Houston announced that three professors were selected to join the prestigious NAI list of senior members. UH now has 39 faculty members on the NAI list.

“We congratulate these three esteemed colleagues on being named NAI Senior Members,” Ramanan Krishnamoorti, vice president for energy and innovation at UH, said in a news release. “This recognition is a testament to their dedication, research excellence and pursuit of real-world impact by knowledge and technologies. Their achievements continue to elevate the University as a leader in innovation and entrepreneurship.”

UH’s new senior members include:

  • Birol Dindoruk, the American Association of Drilling Engineers Endowed Professor of Petroleum Engineering and Chemical and Biomolecular Engineering at the Cullen College of Engineering. He is known for his research in carbon capture and storage, fluid-rock interactions and hydrogen storage. He holds three patents.
  • Megan Robertson, the Neal R. Amundson professor of chemical and biomolecular engineering at UH’s Cullen College of Engineering. She is developing new polymers and groundbreaking strategies for recycling and reusing plastics. Robertson currently has three patents and two more patent applications pending.
  • Francisco Robles Hernandez, a professor of mechanical engineering technology at the UH College of Technology. He holds four patents, and several others are under review. His work focuses on carbon materials, including pioneering work with graphene and designs with steel and aluminum used in automotives and railroads.

“Being named a senior member is both an honor and a responsibility, and I appreciate UH for nurturing an environment where creativity and innovation are not just encouraged but expected,” Dindoruk said. “Ultimately, this milestone is not just about past achievements. It is about future opportunities to innovate, collaborate and make a meaningful impact on both industry and society.”

Allison Post, associate director of electrophysiology research and innovations and manager of innovation partnerships at the Texas Heart Institute at Baylor College of Medicine, also made the list. Post was recognized for her work in biomedical engineering and commitment to advancing cardiovascular care through innovations. Post is the youngest member to be inducted this year.

Other notable Texas honorees include Emma Fan from the University of Texas, Arum Han from Texas A&M and Panos Shiakolas at UT Arlington.

In 2024, Edward Ratner, a computer information systems lecturer in the Department of Information Science Technology at the University of Houston’s Cullen College of Engineering, and Omid Veiseh, a bioengineer at Rice University and director of the Biotech Launch Pad, were named NAI fellows.

The Senior Member Induction Ceremony will honor the 2025 class at NAI’s Annual Conference June 23-26 in Atlanta, Georgia.

---

A version of this story first appeared on our sister site, InnovationMap.com.

Houston researcher dives into accessibility of public EV charging stations

EV equity

A Rice University professor wants to redraw the map for the placement of electric vehicle charging stations to level the playing field for access to EV power sources.

Xinwu Qian, assistant professor of civil and environmental engineering at Rice, is leading research to rethink where EV charging stations should be installed so that they’re convenient for all motorists going about their day-to-day activities.

“Charging an electric vehicle isn’t just about plugging it in and waiting — it takes 30 minutes to an hour even with the fastest charger — therefore, it’s an activity layered with social, economic, and practical implications,” Qian says on Rice’s website. “While we’ve made great strides in EV adoption, the invisible barriers to public charging access remain a significant challenge.”

According to Qian’s research, public charging stations are more commonly located near low-income households, as these residents are less likely to afford or enjoy access to at-home charging. However, these stations are often far from where they conduct everyday activities.

The Rice report explains that, in contrast, public charging stations are geographically farther from affluent suburban areas. However, they often fit more seamlessly into these residents' daily schedules. As a result, low-income communities face an opportunity gap, where public charging may exist in theory but is less practical in reality.

A 2024 study led by Qian analyzed data from over 28,000 public EV charging stations and 5.5 million points across 20 U.S. cities.

“The findings were stark: Income, rather than proximity, was the dominant factor in determining who benefits most from public EV infrastructure,” Qian says.

“Wealthier individuals were more likely to find a charging station at places they frequent, and they also had the flexibility to spend time at those places while charging their vehicles,” he adds. “Meanwhile, lower-income communities struggled to integrate public charging into their routines due to a compounded issue of shorter dwell times and less alignment with daily activities.”

To make matters worse, businesses often target high-income people when they install charging stations, Qian’s research revealed.

“It’s a sad reality,” Qian said. “If we don’t address these systemic issues now, we risk deepening the divide between those who can afford EVs and those who can’t.”

A grant from the National Science Foundation backs Qian’s further research into this subject. He says the public and private sectors must collaborate to address the inequity in access to public charging stations for EVs.