A Houston-based SPAC run by the former Weatherford CEO has agreed to merge with a company that's sustainably producing a material required by several energy transition technologies. Photo via Getty Images

Houston-based Pyrophyte Acquisition Corp., a “blank check” SPAC, plans to merge with Canadian quartz silica producer Sio Silica Corp. in a deal valued at more than $700 million.

The companies say the deal carries an enterprise value of $708 million and an equity value of $758 million.

Sio is sitting on a potential supply of 15.2 billion metric tons of high-purity quartz silica, a material needed to produce energy transition technologies such as photovoltaics, solar panels, semiconductors, batteries, and other electronics. Proceeds from the merger will be earmarked for construction of the first phase of Sio’s silica extraction and processing facility near Winnipeg, Manitoba.

“We searched long and hard for the right candidate to combine with Pyrophyte and its energy transition mission. Sio fulfilled all our criteria,” Bernard Duroc-Danner, chairman of Pyrophyte, says in a news release. “We are proud to join Sio on its journey to supply what is becoming in many countries around the world one of the most important strategic minerals for the world’s energy transition.”

In 2021, Pyrophyte’s stock began trading on the New York Stock Exchange in an IPO valued at $201.25 million. Since then, it’s solely been a special purpose acquisition company (SPAC) without any business operations. Typically, a SPAC aims to acquire or merge with a private company that boasts a promising business model.

Duroc-Danner is former chairman, president, and CEO of Houston-based oilfield equipment and services company Weatherford International Ltd.

Calgary, Alberta-based Sio says high-purity quartz silica will represent a $30 billion global market opportunity by 2030. Among the products that rely on silica are semiconductors, solar panels, photovoltaic (solar) cells, optical fibers, and batteries.

Once the deal closes, the combined company will operate as Sio Silica Inc., whose stock will be traded on the New York Stock Exchange. Sio’s CEO, Feisal Somji, will lead the newly formed company.

The deal has been approved by Sio’s and Pyrophyte’s boards but still must be endorsed by the companies’ shareholders.

Houston-based Nauticus Robotics founder, Nicolaus Radford, shares the latest from his company. Image via LinkedIn

Q&A: Houston robotics entrepreneur on IPO, military innovation, and more

automation nation

Almost a decade ago, Nicolaus Radford founded a robotics company that automated underwater operations for heavy industry customers. Now, the company provides its robotics-as-a-service business to customers across industry, providing key analytics, risk-managed monitoring, and emission-reducing service.

Nauticus Robotics (Nasdaq: KITT) went public via SPAC last year, and Radford, CEO and founder, sat down with InnovationMap earlier this year to share the unique challenges he faced with the IPO, the company's partnerships with the United States Marine Corps, and more. Check out the shortened Q&A below and head to InnovationMap for the full conversation.

InnovationMap: Tell me about life after IPO. What’s been surprising for you leading your company through the transition and now on the other side of IPO?

Nicolaus Radford: I'll tell you what, it’s the hardest thing I ever did in my professional career by a factor of 10. It was a very exceptionally challenging period of time. It took a long to complete the transaction, and the market was just changing under our feet. Rules were and regulations were changing — were we grandfathered in or were we not?

I'm part of some business organizations and, and some of those confidential relationships have turned into friendships. And a couple of them call me and they're like, “we're really worried. We think this is going to be we don't know if you're going to get it done. And we just want you to be aware that you're not you may not get it done.” It is a little scary because once you engage in it, you're running quite a tab with bankers and law firms and all sorts of things. And if you don't complete the deal, it just might kill the company.

But we did it. We were one of a few people last year to actually get a deal over the line. I'm very proud of that. I think it speaks to the quality of the deal that we had. The macro economic environment was exceptionally difficult. It remains to be very difficult today. But we had strong backing from our strategic investors and our partners that were already on the cap table. They put a tremendous amount of money into the deal.

You know, I look back on it and it's, you know, ringing the Nasdaq bell when we listed, and giving that speech at the podium — it was a surreal moment. I remember when I was standing there looking at the Nauticus logo on the seven-story Nasdaq tower, having as many people in the company as we could bring, and just sharing that moment with all of them.

I was excited but cautious at the same time. I mean, the life of a CEO of a public company at large, it's all about the process following a process, the regulations, the administration of the public company, the filings, the reportings — it can feel daunting. I have to rise to the occasion to tackle that in this the next stage of the company.

IM: You’re working with the military on a project that adapts Nauticus tech for Marine Corps use. What’s it been like working with the military on this project?

NR: We've probably worked with military interests for the last six years, but all of the things that we have been doing have been extremely confidential and hush. Now we've been able to work with customers that have a stronger public facing persona, and the Defense Innovation Unit is one of those.

Their charter is it's quite literally looking for commercial technology and adapting that towards military applications, and so it's been nice to be able to show the utility and the application of of a lot of our technology and what we've been working on for so long as it's applied on a broader scale to the big services, whether it's the Navy or the Marine Corps.

Both of the programs we’re working on are all about mine countermeasures, and mines are really, really difficult, especially underwater mines. We've been we've been applying all of Nauticus’s broad technology portfolio to being able to search autonomously and being able to identify and neutralize threats in the water. I love that mission because anytime we can remove our service men and women from these situations, that's just the right thing to do.

IM: What’s next for Nauticus?

NR: What’s next is tough to talk about, because I can only talk about what’s already been published. I see Nauticus being the preeminent ocean robotics company. I want Nauticus to be an empire. It starts small but it grows — and it grows in many different ways, and we’re exploring all of those different ways to grow. We’re leading a technology renaissance in the marine space — and that happens only a few times in an industry.

------

This conversation has been edited for brevity and clarity. This article originally ran on InnovationMap.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

DOE taps Texas companies for $56M in Strategic Petroleum Reserve deliveries

reserve refill

Two companies with ties to the Houston area have been awarded federal contracts totaling nearly $55.8 million to supply about 1 million barrels of crude oil for the nation’s depleted Strategic Petroleum Reserve.

Houston-based Trafigura Trading will provide two-thirds of the oil, and Dallas-based Energy Transfer Crude Marketing will provide the remaining one-third. Energy Transfer, the parent company of Energy Transfer Crude Marketing, operates a 330-acre oil terminal at the Houston Ship Channel.

The U.S. Department of Energy (DOE), which awarded the contracts, said Trafigura and Energy Transfer will deliver the crude oil from Dec. 1 through Jan. 31 to the Strategic Petroleum Reserve’s Bryan Mound storage site near Freeport.

The Strategic Petroleum Reserve, the world’s largest emergency supply of crude oil, can hold up to 714 million barrels of crude oil across 61 underground salt caverns at four sites along the Gulf Coast. The reserve currently contains 410 million barrels of crude oil. During the pandemic, the Biden administration ordered a 180 million-barrel drawdown from the reserve to help combat high gas prices triggered by Russia’s war with Ukraine.

The four strategic reserve sites are connected to 24 Gulf Coast refineries, and another six refineries in Kentucky, Michigan and Ohio.

“Awarding these contracts marks another step in the important process of refilling this national security asset,” U.S. Energy Secretary Chris Wright said.

In March, Wright estimated it would take $20 billion and many years to fill the Strategic Petroleum Reserve to its maximum capacity, according to Reuters

.

What EPA’s carbon capture and storage permitting announcement means for Texas

The View From HETI

Earlier this month, Texas was granted authority by the federal government for permitting carbon capture and storage (CCS) projects. This move could help the U.S. cut emissions while staying competitive in the global energy game.

In June, the U.S. Environmental Protection Agency (EPA) proposed approving Texas’ request for permitting authority under the Safe Drinking Water Act (SDWA) for Class VI underground injection wells for carbon capture and storage (CCS) in the state under a process called “primacy.” The State of Texas already has permitting authority for other injection wells (Classes I-V). In November, the EPA announced final approval of Texas’ primacy request.

Why This Matters for Texas

Texas is the headquarters for virtually every segment of the energy industry. According to the U.S. Energy Information Administration, Texas is the top crude oil- and natural-gas producing state in the nation. The state has more crude oil refineries and refining capacity than any other state in the nation. Texas produces more electricity than any other state, and the demand for electricity will grow with the development of data centers and artificial intelligence (AI). Simply put, Texas is the backbone of the nation’s energy security and competitiveness. For the nation’s economic competitiveness, it is important that Texas continue to produce more energy with less emissions. CCS is widely regarded as necessary to continue to lower the emissions intensity of the U.S. industrial sector for critical products including power generation, refining, chemicals, steel, cement and other products that our country and world demand.

The Greater Houston Partnership’s Houston Energy Transition Initiative (HETI) has supported efforts to bring CCUS to a broader commercial scale since the initiative’s inception.

“Texas is uniquely positioned to deploy CCUS at scale, with world-class geology, a skilled workforce, and strong infrastructure. We applaud the EPA for granting Texas the authority to permit wells for CCUS, which we believe will result in safe and efficient permitting while advancing technologies that strengthen Texas’ leadership in the global energy market,” said Jane Stricker, Executive Director of HETI and Senior Vice President, Energy Transition at the Greater Houston Partnership.

What is Primacy, and Why is it Important?

Primacy grants permitting authority for Class VI wells for CCS to the Texas Railroad Commission instead of the EPA. Texas is required to follow the same strict standards the EPA uses. The EPA has reviewed Texas’ application and determined it meets those requirements.

Research suggests that Texas has strong geological formations for CO2 storage, a world-class, highly skilled workforce, and robust infrastructure primed for the deployment of CCS. However, federal permitting delays are stalling billions of dollars of private sector investment. There are currently 257 applications under review, nearly one-quarter of which are located in Texas, with some applications surpassing the EPA’s target review period of 24 months. This creates uncertainty for developers and investors and keeps thousands of potential jobs out of reach. By transferring permitting to the state, Texas will apply local resources to issue Class VI permits across the states in a timely manner.

Texas joins North Dakota, Wyoming, Louisiana, West Virginia and Arizona with the authority for regulating Class VI wells.

Is CCS safe?

A 2025 study by Texas A&M University reviewed operational history and academic literature on CCS in the United States. The study analyzed common concerns related to CCS efficacy and safety and found that CCS reduces pollutants including carbon dioxide, particulate matter, sulfur oxides and nitrogen oxides. The research found that the risks of CCS present a low probability of impacting human life and can be effectively managed through existing state and federal regulations and technical monitoring and safety protocols.

What’s Next?

The final rule granting Texas’ primacy will become effective 30 days after publication in the Federal Register. Once in effect, the Texas Railroad Commission will be responsible for permitting wells for carbon capture, use and storage and enforcing their safe operation.

———

This article originally ran on the Greater Houston Partnership's Houston Energy Transition Initiative blog. HETI exists to support Houston's future as an energy leader. For more information about the Houston Energy Transition Initiative, EnergyCapitalHTX's presenting sponsor, visit htxenergytransition.org.

Houston energy expert: How the U.S. can turn carbon into growth

Guets Column

For the past 40 years, climate policy has often felt like two steps forward, one step back. Regulations shift with politics, incentives get diluted, and long-term aspirations like net-zero by 2050 seem increasingly out of reach. Yet greenhouse gases continue to rise, and the challenges they pose are not going away.

This matters because the costs are real. Extreme weather is already straining U.S. power grids, damaging homes, and disrupting supply chains. Communities are spending more on recovery while businesses face rising risks to operations and assets. So, how can the U.S. prepare and respond?

The Baker Institute Center for Energy Studies (CES) points to two complementary strategies. First, invest in large-scale public adaptation to protect communities and infrastructure. Second, reframe carbon as a resource, not just a waste stream to be reduced.

Why Focusing on Emissions Alone Falls Short

Peter Hartley argues that decades of global efforts to curb emissions have done little to slow the rise of CO₂. International cooperation is difficult, the costs are felt immediately, and the technologies needed are often expensive. Emissions reduction has been the central policy tool for decades, and it has been neither sufficient nor effective.

One practical response is adaptation, which means preparing for climate impacts we can’t avoid. Some of these measures are private, taken by households or businesses to reduce their own risks, such as farmers shifting crop types, property owners installing fire-resistant materials, or families improving insulation. Others are public goods that require policy action. These include building stronger levees and flood defenses, reinforcing power grids, upgrading water systems, revising building codes, and planning for wildfire risks. Such efforts protect people today while reducing long-term costs, and they work regardless of the source of extreme weather. Adaptation also does not depend on global consensus; each country, state, or city can act in its own interest. Many of these measures even deliver benefits beyond weather resilience, such as stronger infrastructure and improved security against broader threats.

McKinsey research reinforces this logic. Without a rapid scale-up of climate adaptation, the U.S. will face serious socioeconomic risks. These include damage to infrastructure and property from storms, floods, and heat waves, as well as greater stress on vulnerable populations and disrupted supply chains.

Making Carbon Work for Us

While adaptation addresses immediate risks, Ken Medlock points to a longer-term opportunity: turning carbon into value.

Carbon can serve as a building block for advanced materials in construction, transportation, power transmission, and agriculture. Biochar to improve soils, carbon composites for stronger and lighter products, and next-generation fuels are all examples. As Ken points out, carbon-to-value strategies can extend into construction and infrastructure. Beyond creating new markets, carbon conversion could deliver lighter and more resilient materials, helping the U.S. build infrastructure that is stronger, longer-lasting, and better able to withstand climate stress.

A carbon-to-value economy can help the U.S. strengthen its manufacturing base and position itself as a global supplier of advanced materials.

These solutions are not yet economic at scale, but smart policies can change that. Expanding the 45Q tax credit to cover carbon use in materials, funding research at DOE labs and universities, and supporting early markets would help create the conditions for growth.

Conclusion

Instead of choosing between “doing nothing” and “net zero at any cost,” we need a third approach that invests in both climate resilience and carbon conversion.

Public adaptation strengthens and improves the infrastructure we rely on every day, including levees, power grids, water systems, and building standards that protect communities from climate shocks. Carbon-to-value strategies can complement these efforts by creating lighter, more resilient carbon-based infrastructure.

CES suggests this combination is a pragmatic way forward. As Peter emphasizes, adaptation works because it is in each nation’s self-interest. And as Ken reminds us, “The U.S. has a comparative advantage in carbon. Leveraging it to its fullest extent puts the U.S. in a position of strength now and well into the future.”

-----------

Scott Nyquist is a senior advisor at McKinsey & Company and vice chairman, Houston Energy Transition Initiative of the Greater Houston Partnership. The views expressed herein are Nyquist's own and not those of McKinsey & Company or of the Greater Houston Partnership. This article originally appeared on LinkedIn.