Weatherford and Honeywell announced the partnership that will combine Honeywell's emissions management suite with Weatherford's technology. Photo via Getty Images

Two major corporations have teamed up to provide a comprehensive emissions management solution that should have an impact on the energy transition.

Houston-based Weatherford and North Carolina-based Honeywell, which has a significant presence in Houston, announced the partnership that will combine Honeywell's emissions management suite with Weatherford's Cygnet SCADA platform.

Customers will be able to use the new tool "to monitor, report, and take measures to help reduce greenhouse gas emissions, flammable hydrocarbons, and other potentially dangerous and toxic gases," per a news release.

"Through this collaboration with Honeywell, we have built an alliance that further bridges the gap between technological excellence and environmental stewardship," Girish Saligram, president and CEO of Weatherford, says in the release. "Together, our transformative offering provides cutting-edge tools and actionable data to help customers reach their sustainability goals with confidence and efficiency."

The combined platform will provide upstream oil and gas operators a way to access emissions data in near real-time to better make business decisions on potential issues and meeting regulatory requirements. Additionally, the software should equip users with ways to improve efforts to reach environmental goals.

Honeywell's partnership with Weatherford highlights the importance of empowering organizations with solutions that can help quantify and reduce emissions within the energy industry," Pramesh Maheshwari, president of Honeywell Process Solutions, adds. "By integrating our emissions management solution with Weatherford's well lifecycle technology, our customers can now accurately set targets and monitor near real-time progress on their path to net-zero."

Last fall, a Houston-based unit of industrial conglomerate Honeywell unveiled a gas meter capable of measuring both hydrogen and natural gas. Honeywell’s European launch follows a Dutch test of the EI5 smart gas meter, which the company touts as the world’s first commercially available hydrogen-ready gas meter.

Empact Technologies announced a multi-year agreement with Ampliform, which originates, builds, develops, and operates utility-scale solar and solar plus storage projects. Photo courtesy of Empact

Houston software company to manage IRA compliance for solar, storage company with national presence

tapping into tech

Houston company's Inflation Reduction Act compliance management software has scored a new partner.

Empact Technologies announced a multi-year agreement with Ampliform, which originates, builds, develops, and operates utility-scale solar and solar plus storage projects. The Empact platform uses a combination of software and services to ensure projects meet IRS regulatory requirements, which focus on wage and apprenticeship, domestic content, and energy and low-income community incentives. The terms of the agreement were not disclosed

Empact will partner specifically with Ampliform’s project Engineering, Procurement, and Construction (EPC) firms, subcontractors, and key suppliers of steel and iron products. In addition, they will work through a project’s life cycle for EPC’s solar modules, trackers, and inverters to manage prevailing wage & apprenticeship, domestic content, and other tax incentive qualification and compliance.

“The team at Ampliform had the leadership and foresight to recognize the significant risks of IRA non-compliance and the need to have third party compliance management in place prior to construction kick-off," Charles Dauber, CEO and founder of Empact, says in a news release. We look forward to helping Ampliform fully leverage the IRA tax incentives to develop and build their project development pipeline.”

Ampliform has approximately 700MW of projects in short-term development. Ampliform also plans 3GW of projects in its development pipeline. Ampliform’s future expansion plans exceed more than 13GWdc in total. Empact will manage the IRA compliance for these projects. According to a Goldman Sachs report, the IRA is estimated to provide $1.2 trillion of incentives by 2032.

Houston-based oil and gas engineering and construction services provider McDermott is making some major software changes to better operate in the ongoing energy transition. Image via mcdermott-investors.com

Houston company upgrades digital solutions with new partnerships to better address energy transition

software secured

A Houston engineering and construction solutions company serving the energy industry has announced an agreement that will introduce new software to the company's energy transition plans.

McDermott announced today that it has signed a lighthouse agreement with United Kingdom-based industrial software company AVEVA and Massachusetts-based product lifecycle management platform provider Aras. With the new software, McDermott plans "to develop its asset lifecycle management capability across the energy transition, oil and gas, and nuclear sectors," per the news release.

"McDermott is uniquely positioned to combine its extensive expertise in digital twin and industry-leading engineering procurement and construction (EPC) experience," Vaseem Khan, McDermott's senior vice president of Global Operations, says in the release. "The agreement represents our shared vision and commitment to data-centric digital deliverables management and creates an opportunity for robust digital transformation of industry processes."

The new technology should help reduce both cost and risk by improving decision-making, achieving better compliance and traceability, and enhancing performance.

"McDermott's engineering expertise forms an essential input in pioneering an industry solution that is urgently needed to improve outcomes in the energy, nuclear, marine, and other sectors," Rob McGreevy, chief product officer at AVEVA. "Together, we will provide competitive advantages for customers who join the lighthouse program."

The deal includes integrating Aras' Innovator platform with AVEVA Unified Engineering, AVEVA Asset Information Management, and other AVEVA tools and services to create, and McDermott will provide feedback and testing for its new software platforms.

"AVEVA's robust industry asset lifecycle management solutions, built on the Aras platform, will enable McDermott to leverage a fully connected digital thread of the asset's engineering and operations information," Roque Martin, CEO of Aras, says in the release. "We will create useful, usable, and powerful software for our joint customer base."

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

4 Houston inventors named to prestigious national organization

Top Honor

Houston is home to four new senior members of the National Academy of Inventors.

To be eligible to be an NAI Senior Member, candidates must be active faculty, scientists and administrators from NAI member institutions that have demonstrated innovation and produced technologies that have “brought, or aspire to bring, real impact on the welfare of society,” according to the NAI. The members have also succeeded in patents, licensing and commercialization, and educating and mentoring.

The University of Houston announced that three professors were selected to join the prestigious NAI list of senior members. UH now has 39 faculty members on the NAI list.

“We congratulate these three esteemed colleagues on being named NAI Senior Members,” Ramanan Krishnamoorti, vice president for energy and innovation at UH, said in a news release. “This recognition is a testament to their dedication, research excellence and pursuit of real-world impact by knowledge and technologies. Their achievements continue to elevate the University as a leader in innovation and entrepreneurship.”

UH’s new senior members include:

  • Birol Dindoruk, the American Association of Drilling Engineers Endowed Professor of Petroleum Engineering and Chemical and Biomolecular Engineering at the Cullen College of Engineering. He is known for his research in carbon capture and storage, fluid-rock interactions and hydrogen storage. He holds three patents.
  • Megan Robertson, the Neal R. Amundson professor of chemical and biomolecular engineering at UH’s Cullen College of Engineering. She is developing new polymers and groundbreaking strategies for recycling and reusing plastics. Robertson currently has three patents and two more patent applications pending.
  • Francisco Robles Hernandez, a professor of mechanical engineering technology at the UH College of Technology. He holds four patents, and several others are under review. His work focuses on carbon materials, including pioneering work with graphene and designs with steel and aluminum used in automotives and railroads.

“Being named a senior member is both an honor and a responsibility, and I appreciate UH for nurturing an environment where creativity and innovation are not just encouraged but expected,” Dindoruk said. “Ultimately, this milestone is not just about past achievements. It is about future opportunities to innovate, collaborate and make a meaningful impact on both industry and society.”

Allison Post, associate director of electrophysiology research and innovations and manager of innovation partnerships at the Texas Heart Institute at Baylor College of Medicine, also made the list. Post was recognized for her work in biomedical engineering and commitment to advancing cardiovascular care through innovations. Post is the youngest member to be inducted this year.

Other notable Texas honorees include Emma Fan from the University of Texas, Arum Han from Texas A&M and Panos Shiakolas at UT Arlington.

In 2024, Edward Ratner, a computer information systems lecturer in the Department of Information Science Technology at the University of Houston’s Cullen College of Engineering, and Omid Veiseh, a bioengineer at Rice University and director of the Biotech Launch Pad, were named NAI fellows.

The Senior Member Induction Ceremony will honor the 2025 class at NAI’s Annual Conference June 23-26 in Atlanta, Georgia.

---

A version of this story first appeared on our sister site, InnovationMap.com.

Houston researcher dives into accessibility of public EV charging stations

EV equity

A Rice University professor wants to redraw the map for the placement of electric vehicle charging stations to level the playing field for access to EV power sources.

Xinwu Qian, assistant professor of civil and environmental engineering at Rice, is leading research to rethink where EV charging stations should be installed so that they’re convenient for all motorists going about their day-to-day activities.

“Charging an electric vehicle isn’t just about plugging it in and waiting — it takes 30 minutes to an hour even with the fastest charger — therefore, it’s an activity layered with social, economic, and practical implications,” Qian says on Rice’s website. “While we’ve made great strides in EV adoption, the invisible barriers to public charging access remain a significant challenge.”

According to Qian’s research, public charging stations are more commonly located near low-income households, as these residents are less likely to afford or enjoy access to at-home charging. However, these stations are often far from where they conduct everyday activities.

The Rice report explains that, in contrast, public charging stations are geographically farther from affluent suburban areas. However, they often fit more seamlessly into these residents' daily schedules. As a result, low-income communities face an opportunity gap, where public charging may exist in theory but is less practical in reality.

A 2024 study led by Qian analyzed data from over 28,000 public EV charging stations and 5.5 million points across 20 U.S. cities.

“The findings were stark: Income, rather than proximity, was the dominant factor in determining who benefits most from public EV infrastructure,” Qian says.

“Wealthier individuals were more likely to find a charging station at places they frequent, and they also had the flexibility to spend time at those places while charging their vehicles,” he adds. “Meanwhile, lower-income communities struggled to integrate public charging into their routines due to a compounded issue of shorter dwell times and less alignment with daily activities.”

To make matters worse, businesses often target high-income people when they install charging stations, Qian’s research revealed.

“It’s a sad reality,” Qian said. “If we don’t address these systemic issues now, we risk deepening the divide between those who can afford EVs and those who can’t.”

A grant from the National Science Foundation backs Qian’s further research into this subject. He says the public and private sectors must collaborate to address the inequity in access to public charging stations for EVs.

Energy expert: Unlocking the potential of the Texas grid with AI & DLR

guest column

From bitter cold and flash flooding to wildfire threats, Texas is no stranger to extreme weather, bringing up concerns about the reliability of its grid. Since the winter freeze of 2021, the state’s leaders and lawmakers have more urgently wrestled with how to strengthen the resilience of the grid while also supporting immense load growth.

As Maeve Allsup at Latitude Media pointed out, many of today’s most pressing energy trends are converging in Texas. In fact, a recent ERCOT report estimates that power demand will nearly double by 2030. This spike is a result of lots of large industries, including AI data centers, looking for power. To meet this growing demand, Texas has abundant natural gas, solar and wind resources, making it a focal point for the future of energy.

Several new initiatives are underway to modernize the grid, but the problem is that they take a long time to complete. While building new power generation facilities and transmission lines is necessary, these processes can take 10-plus years to finish. None of these approaches enables both significantly expanded power and the transmission capacity needed to deliver it in the near future.

Beyond “curtailment-enabled headroom”

A study released by Duke University highlighted the “extensive untapped potential” in U.S. power plants for powering up to 100 gigawatts of large loads “while mitigating the need for costly system upgrades.” In a nutshell: There’s enough generating capacity to meet peak demand, so it’s possible to add new loads as long as they’re not adding to the peak. New data centers must connect flexibly with limited on-site generation or storage to cover those few peak hours. This is what the authors mean by “load flexibility” and “curtailment-enabled headroom.”

As I shared with POWER Magazine, while power plants do have significant untapped capacity, the transmission grid might not. The study doesn’t address transmission constraints that can limit power delivery where it’s needed. Congestion is a real problem already without the extra load and could easily wipe out a majority of that additional capacity.

To illustrate this point, think about where you would build a large data center. Next to a nuclear plant? A nuclear plant will already operate flat out and will not have any extra capacity. The “headroom” is available on average in the whole system, not at any single power plant. A peaking gas plant might indeed be idle most of the time, but not 99.5% of the time as highlighted by the Duke authors as the threshold. Your data center would need to take the extra capacity from a number of plants, which may be hundreds of miles apart. The transmission grid might not be able to cope with it.

However, there is also additional headroom or untapped potential in the transmission grid itself that has not been used so far. Grid operators have not been able to maximize their grids because the technology has not existed to do so.

The problem with existing grid management and static line ratings

Traditionally, power lines are given a static rating throughout the year, which is calculated by assuming the worst possible cooling conditions of a hot summer day with no wind. This method leads to conservative capacity estimates and does not account for environmental factors that can impact how much power can actually flow through a line.

Take the wind-cooling effect, for example. Wind cools down power lines and can significantly increase the capacity of the grid. Even a slight wind blowing around four miles per hour can increase transmission line capacity by 30 percent through cooling.

That’s why dynamic line ratings (DLR) are such a useful tool for grid operators. DLR enables the assessment of individual spans of transmission lines to determine how much capacity they can carry under current conditions. On average, DLR increases capacity by a third, helping utilities sell more power while bringing down energy prices for consumers.

However, DLR is not yet widely used. The core problem is that weather models are not accurate enough for grid operators. Wind is very dependent on the detailed landscape, such as forests or hills, surrounding the power line. A typical weather forecast will tell you the average conditions in the 10 square miles around you, not the wind speed in the forest where the power line is. Without accurate wind data at every section, even a small portion of the line risks overheating unless the line is managed conservatively.

DLR solutions have been forced to rely on sensors installed on transmission lines to collect real-time weather measurements, which are then used to estimate line ratings. However, installing and maintaining hundreds of thousands of sensors is extremely time-consuming, if not practically infeasible.

The Elering case study

Last year, my company, Gridraven, tested our machine learning-powered DLR system, which uses a AI-enabled weather model, on 3,100 miles of 110-kilovolt and 330-kilovolt lines operated by Elering, Estonia’s transmission system operator, predicting ratings in 15,000 individual locations. The power lines run through forests and hills, where conventional forecasting systems cannot predict conditions with precision.

From September to November 2024, our average wind forecast accuracy saw a 60 percent improvement over existing technology, resulting in a 40 percent capacity increase compared to the traditional seasonal rating. These results were further validated against actual measurements on transmission towers.

This pilot not only demonstrated the power of AI solutions against traditional DLR systems but also their reliability in challenging conditions and terrain.

---

Georg Rute is the CEO of Gridraven, a software provider for Dynamic Line Ratings based on precision weather forecasting available globally. Prior to Gridraven, Rute founded Sympower, a virtual power plant, and was the head of smart grid development at Elering, Estonia's Transmission System Operator. Rute will be onsite at CERAWeek in Houston, March 10-14.

The views expressed herein are Rute's own. A version of this article originally appeared on LinkedIn.