Houston-based Citroniq Chemicals has secured its series A funding. Photo via Getty Images

A fresh $12 million round of funding will enable Houston-based Citroniq Chemicals to propel planning, design, and construction of its first decarbonization plant.

An unidentified multinational energy technology company led the series A round, with participation from Houston-based Lummus Technology Ventures and cooperation from the State of Nebraska. The Citroniq plant, which will produce green polypropylene, will be located in Nebraska.

“Lummus’ latest investment in Citroniq builds on this progress and strengthens our partnership, working together to lower carbon emissions in the plastics industry,” Leon de Bruyn, president and CEO of Lummus Technology, says in a news release.

Citroniq is putting together a decarbonization platform designed to annually capture 2 million metric tons of greenhouse gas emissions at each plant. The company plans to invest more than $5 billion into its green polypropylene plants. Polypropylene is a thermoplastic resin commonly used for injection molding.

The series A round “is just the first step in our journey towards building multiple biomanufacturing hubs, boosting the Nebraska bioeconomy by converting local ethanol into valuable bioplastics,” says Kelly Knopp, co-founder and CEO of Citroniq.

Citroniq’s platform for the chemical and plastics industries uses technology and U.S.-produced ethanol to enable low-cost carbon capture. Citroniq’s process permanently sequesters carbon into a useful plastic pellet.

Lummus Technology licenses process technologies for clean fuels, renewables, petrochemicals, polymers, gas processing and supply lifecycle services, catalysts, proprietary equipment, and digital transformation.

———

This article originally ran on InnovationMap.

Branch Energy aims to provide customers with clean energy at a lower cost than competitors. Photo via Getty Images

Houston clean energy provider raises $10.8M series A

money moves

A tech-driven retail energy provider based in Houston has secured an oversubscribed series A round of funding.

Branch Energy raised a $10.8 million round led by climate-focused venture capital firm Prelude Ventures with co-investor Zero Infinity Partners, an infrastructure tech-focused firm. The fresh funding will go toward accelerating the company's battery management tech and build out the infrastructure of its field services.

A vertically integrated power provider, Branch Energy aims to provide customers with demand management software and battery storage systems to ensure long-term, stable, and clean energy at a lower cost than competitors.

“Our century-old grid design is not equipped for the complexity of today’s energy needs," Alex Ince-Cushman, Branch Energy co-founder and CEO, says in a news release. “Optimizing distributed energy assets in real-time will play an increasingly important role in managing the grid. We built Branch from the ground up as a technology company, allowing us to deliver value to customers in this new era of distributed energy by reducing costs while improving reliability."

The company chose Texas as its inaugural market based on the stress of the grid in the state, the company says in the release. Since 2021 when Branch Energy launched, it has signed up thousands of customers for its 100 percent clean energy service. The business proposition includes lowering customer's energy bills by 5 to 10 percent.

“The power grid, especially in Texas, requires distributed generation and flexible loads as basic economics drives deployment of more renewable resources,” Tim Woodward, managing partner at Prelude Ventures, adds. “Across the country, we are experiencing a major shift toward a decentralized and decarbonized grid. Branch Energy is bringing value to its customers through deployment of intelligent storage that lowers costs and improves reliability.”

Branch Energy, which is available now in some Texas regions, had previously raised $5.5 million in seed and pre-seed funding, per Crunchbase.

The series A funding will support the deployment of its biochar machines across Texas, Oklahoma, Arkansas, and Louisiana. Photo courtesy of Applied Carbon

Houston agriculture robotics co. raises $21.5M series A to grow climatetech solution

freshly funded

A Houston energy tech startup has raised a $21.5 million series a round of funding to support the advancement of its automated technology that converts field wastes into stable carbon.

Applied Carbon, previously known as Climate Robotics, announced that its fresh round of funding was led by TO VC, with participation from Congruent Ventures, Grantham Foundation, Microsoft Climate Innovation Fund, S2G Ventures, Overture.vc, Wireframe Ventures, Autodesk Foundation, Anglo American, Susquehanna Foundation, US Endowment for Forestry and Communities, TELUS Pollinator Fund for Good, and Elemental Excelerator.

The series A funding will support the deployment of its biochar machines across Texas, Oklahoma, Arkansas, and Louisiana.

"Multiple independent studies indicate that converting crop waste into biochar has the potential to remove gigatons of CO2 from the atmosphere each year, while creating trillions of dollars in value for the world's farmers," Jason Aramburu, co-founder and CEO of Applied Carbon, says in a news release. "However, there is no commercially available technology to convert these wastes at low cost.

"Applied Carbon's patented in-field biochar production system is the first solution that can convert crop waste into biochar at a scale and a cost that makes sense for broad acre farming," he continues.

Applied Carbon rebranded in June shortly after being named a top 20 finalist in XPRIZE's four-year, $100 million global Carbon Removal Competition. The company also was named a semi-finalist and awarded $50,000 from the Department of Energy's Carbon Dioxide Removal Purchase Pilot Prize program in May.

"Up to one-third of excess CO2 that has accumulated in the atmosphere since the start of human civilization has come from humans disturbing soil through agriculture," Joshua Phitoussi, co-founder and managing partner at TO VC, adds. "To reach our net-zero objectives, we need to put that carbon back where it belongs.

"Biochar is unique in its potential to do so at a permanence and price point that are conducive to mass-scale adoption of carbon dioxide removal solutions, while also leaving farmers and consumers better off thanks to better soil health and nutrition," he continues. "Thanks to its technology and business model, Applied Carbon is the only company that turns that potential into reality."

The company's robotic technology works in field, picking up agricultural crop residue following harvesting and converts it into biochar in a single pass. The benefits included increasing soil health, improving agronomic productivity, and reducing lime and fertilizer requirements, while also providing a carbon removal and storage solution.

"We've been looking at the biochar sector for over a decade and Applied Carbon's in-field proposition is incredibly compelling," adds Joshua Posamentier, co-founder and managing partner of Congruent Ventures. "The two most exciting things about this approach are that it profitably swings the agricultural sector from carbon positive to carbon negative and that it can get to world-scale impact, on a meaningful timeline, while saving farmers money."

Houston-based Sage Geosystems announced the first close of $17 million round led by Chesapeake Energy Corp. Photo via sagegeosystems.com

Chesapeake Energy backs Houston geothermal tech co. in $17M series A

fresh funding

A Houston geothermal startup has announced the close of its series A round of funding.

Houston-based Sage Geosystems announced the first close of $17 million round led by Chesapeake Energy Corp. The proceeds aim to fund its first commercial geopressured geothermal system facility, which will be built in Texas in Q4 of 2024. According to the company, the facility will be the first of its kind.

The venture is joined by technology investor Arch Meredith, Helium-3 Ventures and will include support from existing investors Virya, LLC, Nabors Industries Ltd., and Ignis Energy Inc.

“The first close of our Series A funding and our commercial facility are significant milestones in our mission to make geopressured geothermal system technologies a reality,” Cindy Taff, CEO of Sage Geosystems, says in a news release. “The success of our GGS technologies is not only critical to Sage Geosystems becoming post-revenue, but it is an essential step in accelerating the development of this proprietary geothermal baseload approach. This progress would not be possible without the ongoing support from our existing investors, and we look forward to continuing this work with our new investors.”

The 3-megawatt commercial facility will be called EarthStore and will use Sage’s technology that harvests energy from pressurized water from underground. The facility will be able to store energy — for short and long periods of time — and can be paired with intermittent renewable energy sources like wind and solar. It will also be able to provide baseload, dispatchable power, and inertia to the electric grid.

In 2023, Sage Geosystems debuted the EarthStore system in a full-scale commercial pilot project in Texas. The pilot produced 200 kilowatt for more than 18 hours, 1 megawatt for 30 minutes, and generated electricity with Pelton turbines. The system had a water loss of less than 2 percent and a round-trip efficiency (RTE) of 70-75.

———

This article originally ran on InnovationMap.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Texas A&M awarded $1.3M federal grant to develop clean energy tech from electronic waste

seeing green

Texas A&M University in College Station has received a nearly $1.3 million federal grant for development of clean energy technology.

The university will use the $1,280,553 grant from the U.S. Department of Energy to develop a cost-effective, sustainable method for extracting rare earth elements from electronic waste.

Rare earth elements (REEs) are a set of 17 metallic elements.

“REEs are essential components of more than 200 products, especially high-tech consumer products, such as cellular telephones, computer hard drives, electric and hybrid vehicles, and flat-screen monitors and televisions,” according to the Eos news website.

REEs also are found in defense equipment and technology such as electronic displays, guidance systems, lasers, and radar and sonar systems, says Eos.

The grant awarded to Texas A&M was among $17 million in DOE grants given to 14 projects that seek to accelerate innovation in the critical materials sector. The federal Energy Act of 2020 defines a critical material — such as aluminum, cobalt, copper, lithium, magnesium, nickel, and platinum — as a substance that faces a high risk of supply chain disruption and “serves an essential function” in the energy sector.

“DOE is helping reduce the nation’s dependence on foreign supply chains through innovative solutions that will tap domestic sources of the critical materials needed for next-generation technologies,” says U.S. Energy Secretary Jennifer Granholm. “These investments — part of our industrial strategy — will keep America’s growing manufacturing industry competitive while delivering economic benefits to communities nationwide.”

Houston university students earn top honors at global energy-poverty competition

dream team

A student-led team from the University of Houston and Texas A&M University took home top prizes at last month's Switch Energy Alliance Case Competition.

Competing virtually against 145 teams from 34 countries, the students, known as The Dream Team, won third place for their plan to address energy poverty in Egypt and Turkey. They were awarded $5,000 in prize money.

The competition challenges student teams to solve real-world energy problems to "drive progress towards a sustainable and equitable energy future," according to the Switch competition's website.

“The Switch competition tackles major issues that we often don’t think about on a daily basis in the United States, so it is a really interesting and tough challenge to solve,” Sarah Grace Kimberly, a senior finance major at UH and member of the team, said in a statement from the university

Kimberly was joined by Pranjal Sheth, a fellow senior finance major at UH, and Nathan Hazlett, a finance graduate student at TAMU with a bachelor’s degree in petroleum engineering.

The Dream Team developed a 10-year plan to address Egypt and Turkey's energy poverty that would create 200,000 jobs, reduce energy costs and improve energy access in rural areas. Its major components included:

  • Developing rooftop and utility-scale solar farms and solar canopies over irrigation canals
  • Expanding wind power capacity by taking advantage of high wind speeds in the Gulf of Suez and Western Desert
  • Deploying cost-efficient technologies along the Nile for rural electrification

“People in the United States should be extremely thankful for the infrastructure and systems that allow us to thrive with power, food and water,” Sheth said in the statement. “Texas went through Winter Storm Uri in 2021—people were without electricity for weeks, and lives were lost. It still comes up in conversations, but certain regions of the world, developing nations, live that experience almost every day. We need to make that a larger part of the conversation and work to help them.”

Team Quwa, a team of four students from the University of Texas at Austin, took home second place and $7,000 in prize money.

“This journey was both intellectually enriching and personally fulfilling,” Mohamed Awad, a PhD candidate at the Hildebrand Department of Petroleum and Geosystems Engineering, said in a statement from UT. “Through the case competition, we had an opportunity to contribute meaningful ideas to address a critical global issue.”

Team Energy Nexus from India earned the top prize and took home $10,000, according to a release from Switch.

Switch Energy Alliance is an Austin-based non-profit that's focused on energy education. The Switch competition began in 2020. Teams of three to four students create a presentation and 15-minute video. The top five teams present their case studies live and answer questions before a panel of judges.

More than 3,200 students from 55 countries have competed over the years. Click here to watch the 2024 final round.