Will 2023 be hydrogen’s year?

GUEST COLUMN

Scott Nyquist debates both sides of the hydrogen argument in this week’s ECHTX Voices of Energy guest column. Photo courtesy of Aramco.

Yes and no.

Yes, because there is real money, and action, behind it.

Globally, there are 600 projects on the books to build electrolyzers, which separate the oxygen and hydrogen in water, and are critical to creating low-emissions “green hydrogen.” That investment could drive down the cost of low-emissions hydrogen, making it cost competitive with conventional fuels—a major obstacle to its development so far.

In addition, oil companies are interested, too. The industry already uses hydrogen for refining; many see hydrogen as supplemental to their existing operations and perhaps, eventually, supplanting them. In the meantime, it helps them to decarbonize their refining and petrochemical operations, which most of the majors have committed to doing.

Indeed, hydrocarbon-based companies and economies could have a big opportunity in “blue hydrogen,” which uses fossil fuels for production, but then captures and stores emissions. (“Green hydrogen” uses renewables; because it is expensive to produce, it is more distant than blue. “Gray hydrogen” uses fossil fuels, without carbon capture; this accounts for most current production and use.) Oil and gas companies have a head start on related infrastructure, such as pipelines and carbon capture, and also see new business opportunities, such as low-carbon ammonia.

Houston, for example, which likes to call itself the "energy capital of the world,” is going big on hydrogen. The region is well suited to this. It has an extensive pipeline infrastructure, an excellent port system, a pro-business culture, and experience. The Greater Houston Partnership and McKinsey—both of whom I am associated with—estimate that demand for hydrogen will grow 6 to 8 percent a year from 2030 to 2050. No wonder Houston wants a piece of that action.

There are promising, near-term applications for hydrogen, such as ammonia, cement, and steel production, shipping, long-term energy storage, long-haul trucking, and aviation. These bits and pieces add up: steel alone accounts for about 8 percent of global carbon-dioxide emissions. Late last year, Airbus announced it is developing a hydrogen-powered fuel cell engine as part of its effort to build zero-emission aircraft. And Cummins, a US-based engine company, is investing serious money in hydrogen for trains and commercial and industrial vehicles, where batteries are less effective; it already has more than 500 electrolyzers at work.

Then there is recent US legislation. The Infrastructure, Investment and Jobs Act (IIJA) of 2021 allocated $9.5 billion funding for hydrogen. Much more important, though, was last year’s Inflation Reduction Act, which contains generous tax credits to promote hydrogen production. The idea is to narrow the price gap between clean hydrogen and other, more emissions-intensive technologies; in effect, the law seeks to fundamentally change the economics of hydrogen and could be a true game-changer.

This is not without controversy: some Europeans think this money constitutes subsidies that are not allowed under trade rules. For its part, Europe has the hydrogen bug, too. Its REPowerEU plan is based on the idea of “hydrogen-ready infrastructure,” so that natural gas projects can be converted to hydrogen when the technology and economics make sense.

So there is a lot of momentum behind hydrogen, bolstered by the ambitious goals agreed to at the most recent climate conference in Egypt. McKinsey estimates that hydrogen demand could reach 660 million tons by 2050, which could abate 20 percent of total emissions. Total planned production for lower-emission green and blue hydrogen through 2030 has reached more than 26 million metric tons annually—quadruple that of 2020.

No, because major issues have not been figured out.

The plans in the works, while ambitious, are murky. A European official, asked about the REPowerEU strategy, admitted that “it’s not clear how it will work.” The same can be said of the United States. The hydrogen value chain, particularly for green hydrogen, requires a lot of electricity, and that calls for flexible grids and much greater capacity. For the United States to reach its climate goals, the grid needs to grow an estimated 60 percent by 2030.That is not easy: just try siting new transmission lines and watch the NIMBY monsters emerge.

Permitting can be a nightmare, often requiring separate approvals from local, state, interstate, and federal authorities, and from different authorities for each (air, land, water, endangered species, and on and on); money does not solve this. Even a state like Texas, which isn’t allergic to fossil fuels and has a relatively light regulatory touch, can get stuck in permitting limbo. Bill Gates recently noted that “over 1,000 gigawatts worth of potential clean energy projects [in the United States] are waiting for approval—about the current size of the entire U.S. grid—and the primary reason for the bottleneck is the lack of transmission.”

Then there is the matter of moving hydrogen from production site to market. Pipeline networks are not yet in place and shifting natural gas pipelines to hydrogen is a long way off. Liquifying hydrogen and transporting is expensive. In general, because hydrogen is still a new industry, it faces “chicken or egg” problems that are typical of the difficulties big innovations face, such as connecting hydrogen buyers to hydrogen producers and connecting carbon emitters to places to store the carbon dioxide. These challenges add to the complexity of getting projects financed.

Finally, there is money. McKinsey estimates that getting on track to that 600 million tons would require investment of $950 billion by 2030; so far, $240 billion has been announced.

Where I stand: in the middle.

I believe in hydrogen’s potential. More than 3 years ago, I wrote about hydrogen, arguing that while there had been real progress, “many things need to happen, in terms of policy, finance, and infrastructure, before it becomes even a medium-sized deal.” Now, some of those things are happening.

So, I guess I land somewhere in the middle. I think 2023 will see real progress, in decarbonizing refining and petrochemicals operations and producing ammonia, specifically. I am also optimistic that a number of low-emissions electrolysis projects will move ahead. And while such advances might seem less than transformative, they are critical: hydrogen, whether blue or green, needs to prove itself, and 2023 could be the year it does.

Because I take hydrogen’s potential seriously, though, I also see the barriers. If it is to become the big deal its supporters believe it could be, that requires big money, strong engineering and construction project management, sustained commitment, and community support. It’s easy to proclaim the wonders of the hydrogen economy; it’s much more difficult to devise sensible business models, standardized contracts, consistent incentives, and a regulatory system that doesn’t drive producers crazy. But all this matters—a lot.

My conclusion: there will be significant steps forward in 2023—but take-off is still years away.

------

Scott Nyquist is a senior advisor at McKinsey & Company and vice chairman, Houston Energy Transition Initiative of the Greater Houston Partnership. The views expressed herein are Nyquist's own and not those of McKinsey & Company or of the Greater Houston Partnership. This article originally ran on LinkedIn.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston earns No. 3 spot among cities with most Fortune 500 headquarters

biggest companies

Houston maintained its No. 3 status this year among U.S. metro areas with the most Fortune 500 headquarters. Fortune magazine tallied 26 Fortune 500 headquarters in the Houston area, behind only the New York City area (62) and the Chicago area (30).

Last year, 23 Houston-area companies landed on the Fortune 500 list. Fortune bases the list on revenue that a public or private company earns during its 2024 budget year.

On the Fortune 500 list for 2025, Spring-based ExxonMobil remained the highest-ranked company based in the Houston area as well as in Texas, sitting at No. 8 nationally. That’s down one spot from its No. 7 perch on the 2024 list. During its 2024 budget year, ExxonMobil reported revenue of $349.6 billion, up from $344.6 billion the previous year.

Here are the rankings and 2024 revenue for the 25 other Houston-area companies that made this year’s Fortune 500:

  • No. 16 Chevron, $202.8 billion
  • No. 28 Phillips 66, $145.5 billion
  • No. 56 Sysco, $78.8 billion
  • No. 75 Conoco Phillips, $56.9 million
  • No. 78 Enterprise Products Partners, $56.2 billion
  • No. 92 Plains GP Holdings, $50 billion
  • No. 143 Hewlett-Packard Enterprise, $30.1 billion
  • No. 153 NRG Energy, $28.1 billion
  • No. 155 Baker Hughes, $27.8 billion
  • No. 159 Occidental Petroleum, $26.9 billion
  • No. 183 EOG Resources, $23.7 billion
  • No. 184 Quanta Services, $23.7 billion
  • No. 194 Halliburton, $23 billion
  • No. 197 Waste Management, $22.1 billion
  • No. 214 Group 1 Automotive, $19.9 billion
  • No. 224 Corebridge Financial, $18.8 billion
  • No. 256 Targa Resources, $16.4 billion
  • No. 275 Cheniere Energy, $15.7 billion
  • No. 289 Kinder Morgan, $15.1 billion
  • No. 345 Westlake Corp., $12.1 billion
  • No. 422 APA, $9.7 billion
  • No. 443 NOV, $8.9 billion
  • No. 450 CenterPoint Energy, $8.6 billion
  • No. 474 Par Pacific Holdings, $8 billion
  • No. 480 KBR Inc., $7.7 billion

Nationally, the top five Fortune 500 companies are:

  • Walmart
  • Amazon
  • UnitedHealth Group
  • Apple
  • CVS Health

“The Fortune 500 is a literal roadmap to the rise and fall of markets, a reliable playbook of the world's most important regions, services, and products, and an indispensable roster of those companies' dynamic leaders,” Anastasia Nyrkovskaya, CEO of Fortune Media, said in a news release.

Among the states, Texas ranks second for the number of Fortune 500 headquarters (54), preceded by California (58) and followed by New York (53).

3 Houston energy companies rank among most innovative startups in Texas

report card

Three Houston companies claimed spots on LexisNexis's 10 Most Innovative Startups in Texas report, with two working in the geothermal energy space.

Sage Geosystems claimed the No. 3 spot on the list, and Fervo Energy followed closely behind at No. 5. Fintech unicorn HighRadius rounded out the list of Houston companies at No. 8.

LexisNexis Intellectual Property Solutions compiled the report. It was based on each company's Patent Asset Index, a proprietary metric from LexisNexis that identifies the strength and value of each company’s patent assets based on factors such as patent quality, geographic scope and size of the portfolio.

Houston tied with Austin, each with three companies represented on the list. Caris Life Sciences, a biotechnology company based in Dallas, claimed the top spot with a Patent Asset Index more than 5 times that of its next competitor, Apptronik, an Austin-based AI-powered humanoid robotics company.

“Texas has always been fertile ground for bold entrepreneurs, and these innovative startups carry that tradition forward with strong businesses based on outstanding patent assets,” Marco Richter, senior director of IP analytics and strategy for LexisNexis Intellectual Property Solutions, said in a release. “These companies have proven their innovation by creating the most valuable patent portfolios in a state that’s known for game-changing inventions and cutting-edge technologies.We are pleased to recognize Texas’ most innovative startups for turning their ideas into patented innovations and look forward to watching them scale, disrupt, and thrive on the foundation they’ve laid today.”

This year's list reflects a range in location and industry. Here's the full list of LexisNexis' 10 Most Innovative Startups in Texas, ranked by patent portfolios.

  1. Caris (Dallas)
  2. Apptronik (Austin)
  3. Sage Geosystems (Houston)
  4. HiddenLayer (Austin)
  5. Fervo Energy (Houston)
  6. Plus One Robotics (San Antonio)
  7. Diligent Robotics (Austin)
  8. HighRadius (Houston)
  9. LTK (Dallas)
  10. Eagle Eye Networks (Austin)

Sage Geosystems has partnered on major geothermal projects with the United States Department of Defense's Defense Innovation Unit, the U.S. Air Force and Meta Platforms. Sage's 3-megawatt commercial EarthStore geothermal energy storage facility in Christine, Texas, was expected to be completed by the end of last year.

Fervo Energy fully contracted its flagship 500 MW geothermal development, Cape Station, this spring. Cape Station is currently one of the world’s largest enhanced geothermal systems (EGS) developments, and the station will begin to deliver electricity to the grid in 2026. The company was recently named North American Company of the Year by research and consulting firm Cleantech Group and came in at No. 6 on Time magazine and Statista’s list of America’s Top GreenTech Companies of 2025. It's now considered a unicorn, meaning its valuation as a private company has surpassed $1 billion.

Meanwhile, HighRadius announced earlier this year that it plans to release a fully autonomous finance platform for the "office of the CFO" by 2027. The company reached unicorn status in 2020.

Tech entrepreneur turned climate investor is on a mission to monetize carbon removal

now streaming

The climate conversation is evolving — fast. It’s no longer just about emissions targets and net-zero commitments. It’s about capital, infrastructure, and execution at industrial scale.

That’s exactly where Yao Huang operates. A seasoned tech entrepreneur turned climate investor, Yao brings sharp clarity to one of the biggest challenges in climate innovation: how do we fund and scale technologies that remove carbon without relying on goodwill or government subsidies?

In this episode of the Energy Tech Startups Podcast, Yao sits down with hosts Jason Ethier and Nada Ahmed for a wide-ranging conversation that redefines how we think about decarbonization. From algae-based photobioreactors that capture CO₂ at the smokestack, to financing models that mirror real estate and infrastructure—not venture capital—Yao lays out a case for why the climate fight will be won or lost on spreadsheets, not slogans.

Her message is as bold as it is practical: this isn’t about saving the planet for the sake of it. It’s about building profitable, resilient systems that scale. And Houston, with its industrial base and project finance expertise, is exactly the place to do it.

The 40-Gigaton Challenge—and a Pandemic Pivot

Yao’s entry into climate wasn’t part of a long-term plan. It was sparked by a quiet moment during the pandemic—and a book.

Reading How to Avoid a Climate Disaster by Bill Gates, she came to two uncomfortable realizations:

  1. The people in power don’t actually have this figured out, and
  2. She would be alive to suffer the consequences.

That insight jolted her out of the traditional tech world and into climate action. She studied at Stanford, surrounded herself with mentors, and began diving into early-stage climate deals. But she quickly realized that most of the solutions she was seeing were still years away from commercialization.

So she narrowed her focus: no R&D moonshots, no science experiments—just deployable solutions that could scale now.

Carbon Optimum: Where Algae Meets Infrastructure

That’s how she found Carbon Optimum, a company using algae photobioreactors to remove CO₂ directly from industrial emissions. Their approach is both elegant and economic:

  • Install algae reactors next to major emitters like coal and cement plants.
  • Feed the algae with flue gas, allowing it to absorb CO₂ in a controlled system.
  • Harvest the algae and convert it into valuable commodities like bio-oils, fertilizer, and food ingredients.

It’s a nature-based solution, enhanced by engineering.
One acre of tanks can capture emissions and generate profit—without subsidies.

“This is one of the few solutions I’ve seen that can scale profitably and quickly,” Yao says. “And we’re not inventing anything new—we’re just doing it better.”

The Real Problem? It’s Capital, Not Carbon

As an investor, Yao is blunt: most climate startups are misaligned with the capital markets.

They’re following a tech startup playbook—built for SaaS, not steel. But building climate infrastructure requires a completely different approach: project finance, blended capital, debt structures, carbon credit integration, and regulatory incentives.

“Climate tech is more like real estate or healthcare than software,” Yao explains. “You don’t raise six rounds of venture. You build a stack—grants, equity, debt, tax credits—and you structure your project like infrastructure.”

It’s not just theory. It’s exactly how Carbon Optimum is expanding—through partnerships, offtake agreements, and real-world deployments. And it’s why she believes many climate startups fail: they don’t speak the language of finance.

Houston’s Role in the Climate Capital Stack

For Yao, Houston isn’t just a backdrop—it’s a strategic asset.

The city’s deep bench of project finance professionals, commodity traders, lawyers, and infrastructure veterans makes it uniquely positioned to lead the deployment phase of climate solutions.

“We’ve been calling it the wrong thing,” she says. “This isn’t just about climate—it’s an energy transition. And Houston knows how to build energy infrastructure at scale.”

Still, she notes, the ecosystem needs to evolve. Less education, more execution. Fewer workshops, more closers.

“Houston could be the epicenter of this movement—if we activate the right people and get the right projects over the line.”

From Carbon Capture to Circular Economies

The potential applications of Carbon Optimum’s algae platform go beyond carbon capture. Because the output—algae biomass—can be converted into:

  • Renewable oil
  • High-efficiency fertilizers (critical in today’s geopolitically fragile supply chains)
  • Food ingredients rich in protein and nutrients
  • Even biochar, a highly stable form of carbon sequestration

It’s scalable, modular, and location-agnostic. In island nations, Yao notes, these systems can offer energy independence by turning waste CO₂ into local energy and fertilizer—without needing to import fuels or food.

“It’s not just emissions reduction. It’s economic sovereignty through circular systems.”

Doing, Not Just Talking

One of Yao’s key takeaways for founders? Don’t waste time. Climate startups don’t have the luxury of trial-and-error cycles stretched over years.

“Founders need to get real about what it takes to scale: talent, capital, storytelling, partnerships. If you’re not ready to do that, maybe you should be a CSO, not a CEO.”

She also points out that founders don’t need to hire everyone—they need to tap the right networks. And in cities like Houston, those networks exist—if you know how to motivate them.

“It takes a different kind of leadership. You’re not just raising money—you’re moving people.”

Why This Episode Matters

This conversation is for anyone who’s serious about scaling real solutions to the climate crisis. Whether you’re a founder navigating capital markets, an investor seeking return and impact, or a policymaker designing the frameworks — Yao Huang offers a grounded, urgent, and actionable perspective.

It’s not about hope. It’s about execution.

Listen to the full episode of the Energy Tech Startups Podcast with Yao Huang:


--
Hosted by
Jason Ethier and Nada Ahmed, the Digital Wildcatters’ podcast, Energy Tech Startups, delves into Houston's pivotal role in the energy transition, spotlighting entrepreneurs and industry leaders shaping a low-carbon future.