Will 2023 be hydrogen’s year?

GUEST COLUMN

Scott Nyquist debates both sides of the hydrogen argument in this week’s ECHTX Voices of Energy guest column. Photo courtesy of Aramco.

Yes and no.

Yes, because there is real money, and action, behind it.

Globally, there are 600 projects on the books to build electrolyzers, which separate the oxygen and hydrogen in water, and are critical to creating low-emissions “green hydrogen.” That investment could drive down the cost of low-emissions hydrogen, making it cost competitive with conventional fuels—a major obstacle to its development so far.

In addition, oil companies are interested, too. The industry already uses hydrogen for refining; many see hydrogen as supplemental to their existing operations and perhaps, eventually, supplanting them. In the meantime, it helps them to decarbonize their refining and petrochemical operations, which most of the majors have committed to doing.

Indeed, hydrocarbon-based companies and economies could have a big opportunity in “blue hydrogen,” which uses fossil fuels for production, but then captures and stores emissions. (“Green hydrogen” uses renewables; because it is expensive to produce, it is more distant than blue. “Gray hydrogen” uses fossil fuels, without carbon capture; this accounts for most current production and use.) Oil and gas companies have a head start on related infrastructure, such as pipelines and carbon capture, and also see new business opportunities, such as low-carbon ammonia.

Houston, for example, which likes to call itself the "energy capital of the world,” is going big on hydrogen. The region is well suited to this. It has an extensive pipeline infrastructure, an excellent port system, a pro-business culture, and experience. The Greater Houston Partnership and McKinsey—both of whom I am associated with—estimate that demand for hydrogen will grow 6 to 8 percent a year from 2030 to 2050. No wonder Houston wants a piece of that action.

There are promising, near-term applications for hydrogen, such as ammonia, cement, and steel production, shipping, long-term energy storage, long-haul trucking, and aviation. These bits and pieces add up: steel alone accounts for about 8 percent of global carbon-dioxide emissions. Late last year, Airbus announced it is developing a hydrogen-powered fuel cell engine as part of its effort to build zero-emission aircraft. And Cummins, a US-based engine company, is investing serious money in hydrogen for trains and commercial and industrial vehicles, where batteries are less effective; it already has more than 500 electrolyzers at work.

Then there is recent US legislation. The Infrastructure, Investment and Jobs Act (IIJA) of 2021 allocated $9.5 billion funding for hydrogen. Much more important, though, was last year’s Inflation Reduction Act, which contains generous tax credits to promote hydrogen production. The idea is to narrow the price gap between clean hydrogen and other, more emissions-intensive technologies; in effect, the law seeks to fundamentally change the economics of hydrogen and could be a true game-changer.

This is not without controversy: some Europeans think this money constitutes subsidies that are not allowed under trade rules. For its part, Europe has the hydrogen bug, too. Its REPowerEU plan is based on the idea of “hydrogen-ready infrastructure,” so that natural gas projects can be converted to hydrogen when the technology and economics make sense.

So there is a lot of momentum behind hydrogen, bolstered by the ambitious goals agreed to at the most recent climate conference in Egypt. McKinsey estimates that hydrogen demand could reach 660 million tons by 2050, which could abate 20 percent of total emissions. Total planned production for lower-emission green and blue hydrogen through 2030 has reached more than 26 million metric tons annually—quadruple that of 2020.

No, because major issues have not been figured out.

The plans in the works, while ambitious, are murky. A European official, asked about the REPowerEU strategy, admitted that “it’s not clear how it will work.” The same can be said of the United States. The hydrogen value chain, particularly for green hydrogen, requires a lot of electricity, and that calls for flexible grids and much greater capacity. For the United States to reach its climate goals, the grid needs to grow an estimated 60 percent by 2030.That is not easy: just try siting new transmission lines and watch the NIMBY monsters emerge.

Permitting can be a nightmare, often requiring separate approvals from local, state, interstate, and federal authorities, and from different authorities for each (air, land, water, endangered species, and on and on); money does not solve this. Even a state like Texas, which isn’t allergic to fossil fuels and has a relatively light regulatory touch, can get stuck in permitting limbo. Bill Gates recently noted that “over 1,000 gigawatts worth of potential clean energy projects [in the United States] are waiting for approval—about the current size of the entire U.S. grid—and the primary reason for the bottleneck is the lack of transmission.”

Then there is the matter of moving hydrogen from production site to market. Pipeline networks are not yet in place and shifting natural gas pipelines to hydrogen is a long way off. Liquifying hydrogen and transporting is expensive. In general, because hydrogen is still a new industry, it faces “chicken or egg” problems that are typical of the difficulties big innovations face, such as connecting hydrogen buyers to hydrogen producers and connecting carbon emitters to places to store the carbon dioxide. These challenges add to the complexity of getting projects financed.

Finally, there is money. McKinsey estimates that getting on track to that 600 million tons would require investment of $950 billion by 2030; so far, $240 billion has been announced.

Where I stand: in the middle.

I believe in hydrogen’s potential. More than 3 years ago, I wrote about hydrogen, arguing that while there had been real progress, “many things need to happen, in terms of policy, finance, and infrastructure, before it becomes even a medium-sized deal.” Now, some of those things are happening.

So, I guess I land somewhere in the middle. I think 2023 will see real progress, in decarbonizing refining and petrochemicals operations and producing ammonia, specifically. I am also optimistic that a number of low-emissions electrolysis projects will move ahead. And while such advances might seem less than transformative, they are critical: hydrogen, whether blue or green, needs to prove itself, and 2023 could be the year it does.

Because I take hydrogen’s potential seriously, though, I also see the barriers. If it is to become the big deal its supporters believe it could be, that requires big money, strong engineering and construction project management, sustained commitment, and community support. It’s easy to proclaim the wonders of the hydrogen economy; it’s much more difficult to devise sensible business models, standardized contracts, consistent incentives, and a regulatory system that doesn’t drive producers crazy. But all this matters—a lot.

My conclusion: there will be significant steps forward in 2023—but take-off is still years away.

------

Scott Nyquist is a senior advisor at McKinsey & Company and vice chairman, Houston Energy Transition Initiative of the Greater Houston Partnership. The views expressed herein are Nyquist's own and not those of McKinsey & Company or of the Greater Houston Partnership. This article originally ran on LinkedIn.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

$360M DOE grant to fund project that will connect ERCOT to grids in other states for first time

powering on

For the first time ever, the power grid for the territory served by the Electric Reliability Council of Texas (ERCOT) will be connected to grids in other states.

Officials hope building a 320-mile transmission line that connects the ERCOT electric grid to electric grids in the Southeast will prevent power outages like the massive blackout that occurred in 2022 when a winter storm blasted Texas.

San Francisco-based Pattern Energy says its Southern Spirit project will cost more than $2.6 billion. Full-scale construction is supposed to get underway in 2028, and the project is set to go online in 2031.

The U.S. Department of Energy recently approved up to $360 million for the transmission project. The transmission line will stretch from Texas’ border with Louisiana to Mississippi. It’ll supply about 3,000 megawatts of electricity in either direction. That’s enough power for about 750,000 residential customers during ERCOT’s peak hours.

ERCOT’s more than 54,100 miles of transmission lines supply power to about 90 percent of Texans.

“The U.S. transmission network is the backbone of our nation’s electricity system. Though our grid has served U.S. energy needs for more than a century, our country’s needs are changing,” David Turk, under secretary at the Department of Energy, says in a news release.

“DOE’s approach to deploying near-term solutions and developing long-term planning tools will ensure our electric grid is more interconnected and resilient than ever before,” Turk adds, “while also supporting greater electricity demand.”

The other three projects that recently received funding from the DOE include:

  • Aroostook Renewable Project, which will construct a new substation in Haynesville, Maine, and a 111-mile transmission line connecting to a substation in Pittsfield, Maine.
  • Cimarron Link, a 400-mile HVDC transmission line from Texas County, Oklahoma to Tulsa, Oklahoma
  • Southline, which will construct a 108-mile transmission line between Hidalgo County, New Mexico, and Las Cruces, New Mexico. The DOE previously supported a 175-mile line from Hidalgo County, New Mexico, to Pima County, Arizona, in Southline Phase 1 on the first round of the Transmission Facilitation Program.

This month's funding completes the $2.5 billion in awards from the Transmission Facilitation Program which is administered through the Building a Better Grid Initiative that launched in January 2022. Its mission has been to develop nationally significant transmission lines, increase resilience by connecting regions of the country and improve access to clean energy sources, according to the DOE.

Earlier this year, ERCOT, which manages 90 percent of Texas’ power supply, forecasted a major spike in demand for electricity over the next five to seven years

3 things to know this week: Key energy transition events, an alternative materials startup rebrands, and more

taking notes

Editor's note: Dive headfirst into the new week with three quick things to catch up on in Houston's energy transition.

Events not to miss

Put these Houston-area energy-related events on your calendar.

  • World Geothermal Energy Day will take place at Karbach Brewery on October 17. Network with and learn more about Houston's geothermal community.
  • Energy Day, Houston’s largest free family festival showcasing exhibits focused on science, technology, engineering, and mathematics, will take place in downtown on October 19.
  • Connecting the Houston energy tech and climate community, Greentown Houston's Climatetech Summit will take place at its Midtown location on October 22.
  • Ally Energy's GRIT Awards will honor energy leaders and best workplaces on October 30.
  • Taking place in Downtown Houston November 19 to 20, the Global Clean Hydrogen Summit will provide project developers, buyers, and financiers with the information they need to establish winning strategies for global clean hydrogen markets.

Big deal: Lilium Jet rolls out plans for pilot in Houston area

Lilium aims for the first piloted flight of the Lilium Jet to occur early in 2025. Photo via lilium.com

An aircraft that's being touted as the first fully electric jet is taking off from Hobby Airport to serve the greater Houston area.

Lilium Jet, which takes off and lands vertically, is making its United States market debut at Houston-area facilities – Houston Hobby Airport, Conroe North Houston Regional Airport, and The Woodlands Heliport Lilium. Houston-based aircraft brokerage EMCJET will house the Lilium Jet at its Galaxy FBO Houston-area facilities at the airports.

The Lilium Jet is capable of quickly connecting routes like Houston Hobby Airport to Galveston, Houston Spaceport to College Station, The Woodlands to Galveston, and others. The jet is designed for regional travel with its aerodynamic shape. The ducted electric fans prioritize efficiency and speed during forward flight. The jet’s anticipated initial operating range is roughly 110 miles. Lilium aims for the first piloted flight of the Lilium Jet to occur early in 2025. Read more.

Podcast: Houston bio-based materials founder rebrands, evolves future-focused sustainability startup

Zimri T. Hinshaw, founder and CEO of Rheom Materials, joins the Houston Innovators Podcast. Photo courtesy of Rheom

At first, Zimri T. Hinshaw just wanted to design a sustainable, vegan jacket inspired by bikers he saw in Tokyo. Now, he's running a bio-based materials company with two product lines and is ready to disrupt the fashion and automotive industries.

Hinshaw founded Rheom Materials (née Bucha Bio) in 2020, but a lot has changed since then. He moved the company from New York to Houston, built out a facility in Houston's East End Maker Hub, and rebranded to reflect the company's newest phase and extended product lines, deriving from dozens of different ingredients, including algae, seaweed, corn, other fruits and vegetables, and more.

"As a company, we pivoted our technology from growing kombucha sheets to grinding up bacteria nanocellulose from kombucha into our products and then we moved away from that entirely," Hinshaw says on the Houston Innovators Podcast. "Today, we're designing different materials that are more sustainable, and the inputs are varied." Read more.