Vibhu Sharma, founder and CEO of InnoVent Renewables, saw a huge opportunity for cleaner tire waste. Photo via LinkedIn

Vibhu Sharma observed a huge sustainability problem within the automotive industry, and he was tired of no one doing anything about it.

"Globally, humans dispose 1 billion tires every year," Sharma says on the Houston Innovators Podcast. "It's a massive environmental and public health problem because these tires can take hundreds of years to break down, and what they start doing is leaking chemicals into the soil."

Today, 98 percent of all tires end up in landfills, Sharma says, and this waste contributes to a multitude of problems — from mosquito and pest infestation to chemical leaks and fire hazards. That's why he founded InnoVent Renewables, a Houston-based company that uses its proprietary continuous pyrolysis technology to convert waste tires into valuable fuels, steel, and chemicals.

While the process of pyrolysis — decomposing materials using high heat — isn't new, InnoVent's process has a potential to be uniquely impactful. As Sharma explains on the show, he's targeting areas with an existing supply of waste tires. The company's first plant — located in Monterrey, Mexico — is expected to go online early in the new year, an impressive accomplishment considering Sharma started his company just over a year ago and bootstrapped the business with only a friends and family round of funding.

"It's about 16 months or so from start to commercial operations, which is phenomenal when you consider what it takes to build and operate a chemical or petrochemical facility," Sharma says.

Currently, with the facility close to operations, Sharma is looking to secure customers for the plant's products — which includes diesel, steel, and carbon black — and he doesn't have to look too far out of the automotive industry for his potential customer base. Additionally, the plant should be net zero by day one, since Sharma says he will be using the output to fuel operations.

While the first facility is in Mexico, Sharma says they are already looking at potential secondary locations with Texas at the top of his list. Houston, where Sharma has worked for 26 years, has been a strategic headquarters for InnoVent.

"When it came to doing the research and development, we were able to work with experts in the Houston and Texas areas to test out our idea and validate it," Sharma says. "One thing that gets under appreciated about Houston is how well it's connected to the rest of the world. There are so many direct connections between Houston and Latin America, as well as Europe, Middle East, and Asia."

"I also find that the Houston ecosystem is very supportive of new companies and helping them grow," he adds.

———

This article originally ran on InnovationMap.

Vibhu Sharma founded InnoVent Renewables to make a sustainable impact on tire waste. Photo courtesy

Why this Houston energy innovator created a spin-off company to focus on tire waste

Q&A

With over a billion cars currently on the road — each with four tires that will eventually end up discarded, one Houstonian is hoping to create the infrastructure to sustainably dispose of tire waste now and into the future.

Announced earlier this month, Vibhu Sharma founded InnoVent Renewables to establish production facilities that utilize a proprietary continuous pyrolysis technology that is able to convert waste tires, plastics, and biomass into fuels and chemicals.

In a Q&A with EnergyCapital, Sharma explains his plans to sustainably impact the tire waste space and his vision for his company.

EnergyCapital: Why did you decide to expand the InnoVent brand to focus on renewable energy?

Vibhu Sharma: InnoVent Technology has been developing and implementing projects in renewable energy, chemicals, and oil and gas. Project examples include an EV battery chemical project for a $9 billion chemical company, municipal solid waste (MSW) to biogas, and of course pyrolysis of waste tires, plastics and biomass. Renewable energy is the calling of our time, and with our expertise in this area, we felt strongly that we must do more. With 1 billion waste tires disposed of every year, we wanted to focus on this vast opportunity, which led us to create a spin-off company called InnoVent Renewables, in order to specifically focus on innovative technologies such as pyrolysis of waste tires. We received overwhelming response from our investors and partners, and we're on our way to the first commercial production facility.

EC: Can you describe the process of converting the materials into fuel? How does it work?

VS: At a high level the process involves shredding of tires into small cubes, which are then fed into the main pyrolysis reactor. They're pre-heated enroute to the reactor, using the pyrolysis gas that's generated in the reactor. The reactor operates at a high temperature, and in the absence of oxygen, and decomposes the tires into various components. These are then separated using various techniques. The gases are treated to remove any sulfur, and then used to preheat the shredded tires. The pyrolysis oil (pyoil), which is one of the main products, is condensed out.

The pyoil is further processed to separate out higher value aromatics, and the remaining pyoil is equivalent to off-road diesel or fuel oil, and can be sold directly. The aromatic stream can be further processed or sold directly. It makes a great feed for petrochemical plants, or carbon black plants.

There are two solid products as well. These are recovered carbon black (rCB) and steel wire. Steel wire is separated from the rCB mix and can be sold directly. The rCB is further processed through a series of steps resulting in a high-quality powder which can be used to make tires, making it a completely circular product.

EC: Tell me about your expansion plan. Where are you hoping to grow the company and why in those particular regions?

VS: Our immediate plan is to build and start our commercial production facility in Monterrey, Mexico. Monterrey happens to be home to nearly 50 million waste tires. We are located very close to where the source is. We will set up our initial production train there, and leave room to expand to multiple parallel trains at the same site or nearby sites.

We have our own engineering and operations team in Monterrey, and we have access to modern infrastructure and resources, as this is a fast-growing city of 6 million people. In addition, we have close proximity to Texas for product distribution. Our next step will be to establish production facilities in Texas. We are based in Texas. Texas also has access to at least 50 million tires in landfills all across the state, and the state is taking significant measures to address this issue. We are already engaging with various entities here to plan our expansion site. Meanwhile we have been receiving high levels of interest from counties in Florida, California, as well as international sites in India and the Middle East to set up production facilities there. There are one billion waste tires disposed of every year, it's a huge opportunity. Some of these expansion decisions will depend on support from state governments, access to tires, cost of setting up the facility, etc.

EC: Do you plan on raising investment funding to reach these goals? If not, how will you be funded?

VS: We are fully funded for our first production site in Mexico. Based on our cash flow projections, we should be able to self-fund expansions at that site, and eventually add additional production trains. In order to accelerate our expansion at other sites, we intend to raise funds, with support from different states/counties in the USA where we decide to expand, and with support from investors. We are also open to strategic partners that can team up with us for the expansion both internationally and domestically.

EC:  In the long term, what's the impact you hope to make?

VS: Each production train of 15,000 tons that recycles 1 million passenger tires per year, can reduce CO2 emissions by 80 million pounds per year. Over the next five years, our goal is to get that target to 150,000 tons of recycling, which is 800 million pounds of CO2 emission reduction. That's a good impact to have, and a great way to drive renewable energy forward.

------

This conversation has been edited for brevity and clarity.

Tired of slow tire decomposition? This Houston company has a solution. Photo via InnoVentRenewables.com

New Houston company launches to turn recycled materials into fuel

renewables

Every year, over a billion tires are disposed of globally, and, while in use, tires are used to reach maximum speed on the road, their decomposition times are inordinately slow.

Houston-based InnoVent Renewables has a solution. The company launched this week to drive renewable energy forward with its proprietary continuous pyrolysis technology that is able to convert waste tires, plastics, and biomass into fuels and chemicals.

“We are thrilled to formally launch InnoVent Renewables and plan to ramp-up operations into early 2024," InnoVent Renewables CEO Vibhu Sharma says in a news release. “Our investors, strategic advisors, and management team are all fully committed to our success as we address the global challenge of waste tires. We firmly believe our proven process, deployed at scale globally, will have a huge positive impact on our climate and fill a clear environment need.”

While InnoVent Renewables has only just launched, Sharma has worked in the space for years with his company InnoVent Technology, a technology and consulting company working with clients on turnkey process technology and asset management solutions within the process and manufacturing industries.

During InnoVent's unique material breakdown process, its pyrolysis technology recovers chemicals from the products, and produces high-quality fuels — in in a net-zero capacity. The company's products include renewable pyrolysis oil, or PyOil; aromatics; recovered carbon black, or rCB; and steel wire. PyOil, according to InnoVent's website, can be sold as fuel oil, off-road diesel, or used as a feedstock to crude blending.

"The InnoVent team conducted product quality analysis in conjunction with a world renowned research facility and results were further validated and scaled up in 2022, using comprehensive process simulation software and pre-engineering design work for scale-up," reads the InnoVent website.

Headquartered in Houston, the company has operations in Pune, India, and Monterrey, Mexico, with plans for aggressive growth across North America and Latin America. Specifically, InnoVent is planning to open a commercial production plant in Monterrey next year. Down the road, the company's team hopes to expand in Europe, the Middle East, and Asia-Pacific.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston energy tech company breaks ground on low-cost green hydrogen pilot plant

coming soon

Houston’s Lummus Technology and Advanced Ionics have broken ground on their hydrogen pilot plant at Lummus’ R&D facility in Pasadena.

The plant will support Advanced Ionics’ cutting-edge electrolyzer technology, which aims to deliver high-efficiency hydrogen production with reduced energy requirements.

“By demonstrating Advanced Ionics’ technology at our state-of-the-art R&D facility, we are leveraging the expertise of our scientists and R&D team, plus our proven track record of developing breakthrough technologies,” Leon de Bruyn, president and CEO of Lummus, said in a news release. “This will help us accelerate commercialization of the technology and deliver scalable, cost-effective and sustainable green hydrogen solutions to our customers.”

Advanced Ionics is a Milwaukee-based low-cost green hydrogen technology provider. Its electrolyzer converts process and waste heat into green hydrogen for less than a dollar per kilogram, according to the company. The platform's users include industrial hydrogen producers looking to optimize sustainability at an affordable cost.

Lummus, a global energy technology company, will operate the Advanced Ionics electrolyzer and manage the balance of plant systems.

In 2024, Lummus and Advanced Ionics established their partnership to help advance the production of cost-effective and sustainable hydrogen technology. Lummus Venture Capital also invested an undisclosed amount into Advanced Ionics at the time.

“Our collaboration with Lummus demonstrates the power of partnerships in driving the energy transition forward,” Ignacio Bincaz, CEO of Advanced Ionics, added in the news release. “Lummus serves as a launchpad for technologies like ours, enabling us to validate performance and integration under real-world conditions. This milestone proves that green hydrogen can be practical and economically viable, and it marks another key step toward commercial deployment.”

Houston Energy Transition Initiative releases 2025 year in review

The View From HETI

The Houston Energy Transition Initiative (HETI) concludes another impactful year by reaffirming our commitment to positioning Houston as the global leader in the energy transition – delivering more energy with fewer emissions. HETI continues to be focused on advancing key regional priorities, driving economic development and talent recruitment.

It was a year of changes across the energy landscape, yet HETI continued to collaborate, convene, and deliver measurable progress. Below are some of the year’s key highlights:

Sharing Members’ Impact on Decarbonization and Emissions Reductions

HETI released a report detailing members’ low-carbon initiatives and commitments, showcasing industry momentum and long-term pathways to achieving the dual challenge of meeting growing global energy demand while reducing emissions. Major findings include more than $95 billion in low-carbon investments and 20% reduction in Scope 1 emissions since 2017 by HETI-affiliated companies. The report also recommends strategic pathways for continued emissions reductions.

Advancing CCUS at Commercial Scale

HETI publicly supported efforts to accelerate carbon capture, utilization, and storage (CCUS) efforts to commercial scale. Early in the year, HETI and the Houston CCS Alliance commissioned Texas A&M University’s Energy Institute and Mary Kay O’Connor Process Safety Center to research the operational history and safety record of CCUS in the United States. In November, the U.S. Environmental Protection Agency granted Texas authority to permit CCUS—a significant win that increases the region’s competitiveness in the global energy ecosystem.

Leadership in Resilient Power for Houston’s Growth

In June, HETI hosted its first Resilient Power: Fueling Houston’s Growing Economy summit, bringing together more than 100 business and civic leaders to discuss the role of resilient, reliable power in Houston’s economic development. Cross-sector leaders explored the impacts of rising power demand driven by industrial decarbonization and digitalization, and discussed the essential collaboration between the energy and tech sectors to strengthen long-term resilience through an “all of the above” approach. HETI also published a fact sheet on Houston’s resilient power access, affordability, and reliability as a resource for partners.

Showcasing Houston’s Leadership at CERAWeek 2025

HETI participated in CERAWeek 2025, elevating Houston’s energy leadership on the world stage. The HETI House activation in the Innovation Agora attracted more than 1,000 visitors and generated over 80 economic development leads. In addition, HETI partnered with Rice Alliance and TEX-E for the fourth annual Energy Ventures Pitch Competition at CERAWeek, bringing together students, startups and energy leaders to advance innovation and investment.

Scaling Houston’s Innovation Ecosystem

As Houston’s energy innovation ecosystem continues to grow, HETI plays an important role in shaping its future. During its second year, Houston Energy and Climate Startup Week attracted more than 3,900 attendees from local and global startups, industry leaders, and investors—further solidifying Houston’s status as the world’s leading energy innovation hub.

Strengthening Regional Competitiveness

To advance technology commercialization and support the Gulf Coast’s continued energy competitiveness, HETI hosted its second annual Gulf Coast National Labs Workshop. This year’s event convened more than 120 leaders representing six national laboratories, industry partners, academia, and government stakeholders to accelerate collaboration around the region’s greatest energy and chemical challenges.

HETI’s progress this year is significant, but the work ahead is even more critical. As we move into the new year, HETI remains steadfast in its commitment to convening industry leaders, informing policy, supporting innovation, and driving economic growth across the region. This work strengthens Houston’s core energy economy and accelerates the emerging sectors that will ensure Houston continues to lead the world in energy.

———

This article originally appeared on the Greater Houston Partnership's Houston Energy Transition Initiative blog. HETI exists to support Houston's future as an energy leader. For more information about the Houston Energy Transition Initiative, EnergyCapitalHTX's presenting sponsor, visit htxenergytransition.org.

Chevron CEO touts biofuels as part of its renewable energy efforts

Betting on biofuels

As Chevron Chairman and CEO Mike Wirth surveys the renewable energy landscape, he sees the most potential in biofuels.

At a recent WSJ CEO Council event, Wirth put a particular emphasis on biofuels—the most established form of renewable energy—among the mix of low-carbon energy sources. According to Biofuels International, Chevron operates nine biorefineries around the world.

Biofuels are made from fats and oils, such as canola oil, soybean oil and used cooking oil.

At Chevron’s renewable diesel plant in Geismar, Louisiana, a recent expansion boosted annual production by 278 percent — from 90 million gallons to 340 million gallons. To drive innovation in the low-carbon-fuels sector, Chevron opened a technology center this summer at its renewable energy campus in Ames, Iowa.

Across the board, Chevron has earmarked $8 billion to advance its low-carbon business by 2028.

In addition to biofuels, Chevron’s low-carbon strategy includes hydrogen, although Wirth said hydrogen “is proving to be very difficult” because “you’re fighting the laws of thermodynamics.”

Nonetheless, Chevron is heavily invested in the hydrogen market:

As for geothermal energy, Wirth said it shows “some real promise.” Chevron’s plans for this segment of the renewable energy industry include a 20-megawatt geothermal pilot project in Northern California, according to the California Community Choice Association. The project is part of an initiative that aims to eventually produce 600 megawatts of geothermal energy.

What about solar and wind power?

“We start with things where we have some reason to believe we can create shareholder value, where we’ve got skills and competency, so we didn’t go into wind or solar because we’re not a turbine manufacturer installing wind and solar,” he said in remarks reported by The Wall Street Journal.

In a September interview with The New York Times, Wirth touched on Chevron’s green energy capabilities.

“We are investing in new technologies, like hydrogen, carbon capture and storage, lithium and renewable fuels,” Wirth said. “They are growing fast but off a very small base. We need to do things that meet demand as it exists and then evolve as demand evolves.”