Vibhu Sharma founded InnoVent Renewables to make a sustainable impact on tire waste. Photo courtesy

With over a billion cars currently on the road — each with four tires that will eventually end up discarded, one Houstonian is hoping to create the infrastructure to sustainably dispose of tire waste now and into the future.

Announced earlier this month, Vibhu Sharma founded InnoVent Renewables to establish production facilities that utilize a proprietary continuous pyrolysis technology that is able to convert waste tires, plastics, and biomass into fuels and chemicals.

In a Q&A with EnergyCapital, Sharma explains his plans to sustainably impact the tire waste space and his vision for his company.

EnergyCapital: Why did you decide to expand the InnoVent brand to focus on renewable energy?

Vibhu Sharma: InnoVent Technology has been developing and implementing projects in renewable energy, chemicals, and oil and gas. Project examples include an EV battery chemical project for a $9 billion chemical company, municipal solid waste (MSW) to biogas, and of course pyrolysis of waste tires, plastics and biomass. Renewable energy is the calling of our time, and with our expertise in this area, we felt strongly that we must do more. With 1 billion waste tires disposed of every year, we wanted to focus on this vast opportunity, which led us to create a spin-off company called InnoVent Renewables, in order to specifically focus on innovative technologies such as pyrolysis of waste tires. We received overwhelming response from our investors and partners, and we're on our way to the first commercial production facility.

EC: Can you describe the process of converting the materials into fuel? How does it work?

VS: At a high level the process involves shredding of tires into small cubes, which are then fed into the main pyrolysis reactor. They're pre-heated enroute to the reactor, using the pyrolysis gas that's generated in the reactor. The reactor operates at a high temperature, and in the absence of oxygen, and decomposes the tires into various components. These are then separated using various techniques. The gases are treated to remove any sulfur, and then used to preheat the shredded tires. The pyrolysis oil (pyoil), which is one of the main products, is condensed out.

The pyoil is further processed to separate out higher value aromatics, and the remaining pyoil is equivalent to off-road diesel or fuel oil, and can be sold directly. The aromatic stream can be further processed or sold directly. It makes a great feed for petrochemical plants, or carbon black plants.

There are two solid products as well. These are recovered carbon black (rCB) and steel wire. Steel wire is separated from the rCB mix and can be sold directly. The rCB is further processed through a series of steps resulting in a high-quality powder which can be used to make tires, making it a completely circular product.

EC: Tell me about your expansion plan. Where are you hoping to grow the company and why in those particular regions?

VS: Our immediate plan is to build and start our commercial production facility in Monterrey, Mexico. Monterrey happens to be home to nearly 50 million waste tires. We are located very close to where the source is. We will set up our initial production train there, and leave room to expand to multiple parallel trains at the same site or nearby sites.

We have our own engineering and operations team in Monterrey, and we have access to modern infrastructure and resources, as this is a fast-growing city of 6 million people. In addition, we have close proximity to Texas for product distribution. Our next step will be to establish production facilities in Texas. We are based in Texas. Texas also has access to at least 50 million tires in landfills all across the state, and the state is taking significant measures to address this issue. We are already engaging with various entities here to plan our expansion site. Meanwhile we have been receiving high levels of interest from counties in Florida, California, as well as international sites in India and the Middle East to set up production facilities there. There are one billion waste tires disposed of every year, it's a huge opportunity. Some of these expansion decisions will depend on support from state governments, access to tires, cost of setting up the facility, etc.

EC: Do you plan on raising investment funding to reach these goals? If not, how will you be funded?

VS: We are fully funded for our first production site in Mexico. Based on our cash flow projections, we should be able to self-fund expansions at that site, and eventually add additional production trains. In order to accelerate our expansion at other sites, we intend to raise funds, with support from different states/counties in the USA where we decide to expand, and with support from investors. We are also open to strategic partners that can team up with us for the expansion both internationally and domestically.

EC:  In the long term, what's the impact you hope to make?

VS: Each production train of 15,000 tons that recycles 1 million passenger tires per year, can reduce CO2 emissions by 80 million pounds per year. Over the next five years, our goal is to get that target to 150,000 tons of recycling, which is 800 million pounds of CO2 emission reduction. That's a good impact to have, and a great way to drive renewable energy forward.

------

This conversation has been edited for brevity and clarity.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

CenterPoint launches $65B capital improvement plan

grid growth

To support rising demand for power, Houston-based utility company CenterPoint Energy has launched a $65 billion, 10-year capital improvement plan.

CenterPoint said that in its four-state service territory — Texas, Indiana, Minnesota and Ohio — the money will go toward building and maintaining a “resilient” electric grid and a safe natural gas system.

In the Houston area, CenterPoint forecasts peak demand for electricity will increase nearly 50 percent, to almost 31 gigawatts, by 2031 and peak demand will climb to almost 42 gigawatts by the middle of the next decade. CenterPoint provides energy to nearly 2.8 million customers in the Houston area.

In addition to the $65 billion capital improvement budget, which is almost 40 percent higher than the 2021 budget, CenterPoint has identified more than $10 billion in investment opportunities that could further improve electric and natural gas service.

“Every investment we make at CenterPoint is in service of our approximately seven million metered customers we have the privilege to serve,” CenterPoint president and CEO Jason Wells said in a news release.

“With our customer-driven yet conservative approach to growth, we continue to see significant potential for even more investment for the benefit of our customers that is not yet reflected in our new plan,” he added.

UH projects propose innovative reuse of wind turbines and more on Gulf Coast

Forward-thinking

Two University of Houston science projects have been selected as finalists for the Gulf Futures Challenge, which will award a total of $50 million to develop ideas that help benefit the Gulf Coast.

Sponsored by the National Academies of Science, Engineering and Medicine’s Gulf Coast Research Program and Lever for Change, the competition is designed to spark innovation around problems in the Gulf Coast, such as rising sea levels, pollution, energy security, and community resiliency. The two UH projects beat out 162 entries from organizations based in Alabama, Florida, Louisiana, Mississippi, and Texas.

“Being named a finalist for this highly competitive grant underscores the University of Houston’s role as a leading research institution committed to addressing the most pressing challenges facing our region,” said Claudia Neuhauser, vice president for research at UH.

“This opportunity affirms the strength of our faculty and researchers and highlights UH’s capacity to deliver innovative solutions that will ensure the long-term stability and resilience of the Gulf Coast.”

One project, spearheaded by the UH Repurposing Offshore Infrastructure for Continued Energy (ROICE) program, is studying ways to use decommissioned oil rig platforms in the Gulf of Mexico as both clean energy hydrogen power generators as well a marine habitats. There are currently thousands of such platforms in the Gulf.

The other project involves the innovative recycling of wind turbines into seawall and coastal habitats. Broken and abandoned wind turbine blades have traditionally been thought to be non-recyclable and end up taking up incredible space in landfills. Headed by a partnership between UH, Tulane University, the University of Texas Health Science Center at Houston, the city of Galveston and other organizations, this initiative could vastly reduce the waste associated with wind farm technology.

wind turbine recycled for Gulf Coast seawall.Wind turbines would be repurposed into seawalls and more. Courtesy rendering

"Coastal communities face escalating threats from climate change — land erosion, structural corrosion, property damage and negative health impacts,” said Gangbing Song, Moores Professor of Mechanical and Aerospace Engineering at UH and the lead investigator for both projects.

“Leveraging the durability and anti-corrosive properties of these of decommissioned wind turbine blades, we will build coastal structures, improve green spaces and advance the resilience and health of Gulf Coast communities through integrated research, education and outreach.”

The two projects have received a development grant of $300,000 as a prize for making it to the finals. When the winner are announced in early 2026, two of the projects will net $20 million each to bring their vision to life, with the rest earning a consolation prize of $875,000, in additional project support.

In the event that UH doesn't grab the grand prize, the school's scientific innovation will earn a guaranteed $1.75 million for the betterment of the Gulf Coast.

---

This article originally appeared on CultureMap.com.

ERCOT steps up grid innovation efforts to support growing power demand

grid boost

As AI data centers gobble up more electricity, the Electric Reliability Council of Texas (ERCOT) — whose grid supplies power to 90 percent of Texas — has launched an initiative to help meet challenges presented by an increasingly strained power grid.

ERCOT, based in the Austin suburb of Taylor, said its new Grid Research, Innovation, and Transformation (GRIT) initiative will tackle research and prototyping of emerging technology and concepts to “deeply understand the implications of rapid grid and technology evolution, positioning ERCOT to lead in the future energy landscape.”

“As the ERCOT grid continues to rapidly evolve, we are seeing greater interest from industry and academia to collaborate on new tools and innovative technologies to advance the reliability needs of tomorrow’s energy systems,” ERCOT President and CEO Pablo Vegas said in a news release. “These efforts will provide an opportunity to share ideas and bring new innovations forward, as we work together to lead the evolution and expansion of the electric power grid.”

In conjunction with the GRIT initiative, ERCOT launched the Research and Innovation Partnership Engagement (RIPE) program. The program enables partners to work with ERCOT on developing technology aimed at resolving grid challenges.

To capitalize on ideas for grid improvements, the organization will host its third annual ERCOT Innovation Summit on March 31 in Round Rock. The summit “brings together thought leaders across the energy research and innovation ecosystem to explore solutions that use innovation to impact grid transformation,” ERCOT said.

“As the depth of information and industry collaboration evolves, we will continue to enhance the GRIT webpages to create a dynamic and valuable resource for the broader industry to continue fostering strong collaboration and innovation with our stakeholders,” said Venkat Tirupati, ERCOT’s vice president of DevOps and grid transformation.

ERCOT’s GRIT initiative comes at a time when the U.S. is girding for heightened demand for power, due in large part to the rise of data centers catering to the AI boom.

A study released in 2024 by the Electric Power Research Institute (EPRI) predicted electricity for data centers could represent as much as 9.1 percent of total power usage in the U.S. by 2030. According to EPRI, the share of Texas electricity consumed by data centers could climb from 4.6 percent in 2023 to almost 11 percent by 2030.

A report issued in 2024 by the federal government’s Lawrence Berkeley National Laboratory envisions an even faster increase in data-center power usage. The report projected data centers will consume as much as 12 percent of U.S. electricity by 2028, up from 4.4 percent in 2023.

In 2023, the EPRI study estimated, 80 percent of the U.S. electrical load for data centers was concentrated in two states, led by Virginia and Texas. The University of Texas at Austin’s Center for Media Engagement reported in July that Texas is home to 350 data centers, second only to Virginia.

“The U.S. electricity sector is working hard to meet the growing demands of data centers, transportation electrification, crypto-mining, and industrial onshoring, while balancing decarbonization efforts,” David Porter, EPRI’s vice president of electrification and sustainable energy strategy, said. “The data center boom requires closer collaboration between large data center owners and developers, utilities, government, and other stakeholders to ensure that we can power the needs of AI while maintaining reliable, affordable power to all customers.”