Researchers Rahul Pandey, senior scientist with SRI and principal investigator (left), and Praveen Bollini, a University of Houston chemical engineering faculty, are key contributors to the microreactor project. Photo via uh.edu

A University of Houston-associated project was selected to receive $3.6 million from the U.S. Department of Energy’s Advanced Research Projects Agency-Energy that aims to transform sustainable fuel production.

Nonprofit research institute SRI is leading the project “Printed Microreactor for Renewable Energy Enabled Fuel Production” or PRIME-Fuel, which will try to develop a modular microreactor technology that converts carbon dioxide into methanol using renewable energy sources with UH contributing research.

“Renewables-to-liquids fuel production has the potential to boost the utility of renewable energy all while helping to lay the groundwork for the Biden-Harris Administration’s goals of creating a clean energy economy,” U.S. Secretary of Energy Jennifer M. Granholm says in an ARPA-E news release.

The project is part of ARPA-E’s $41 million Grid-free Renewable Energy Enabling New Ways to Economical Liquids and Long-term Storage program (or GREENWELLS, for short) that also includes 14 projects to develop technologies that use renewable energy sources to produce sustainable liquid fuels and chemicals, which can be transported and stored similarly to gasoline or oil, according to a news release.

Vemuri Balakotaiah and Praveen Bollini, faculty members of the William A. Brookshire Department of Chemical and Biomolecular Engineering, are co-investigators on the project. Rahul Pandey, is a UH alum, and the senior scientist with SRI and principal investigator on the project.

Teams working on the project will develop systems that use electricity, carbon dioxide and water at renewable energy sites to produce renewable liquid renewable fuels that offer a clean alternative for sectors like transportation. Using cheaper electricity from sources like wind and solar can lower production costs, and create affordable and cleaner long-term energy storage solutions.

“As a proud UH graduate, I have always been aware of the strength of the chemical and biomolecular engineering program at UH and kept myself updated on its cutting-edge research,” Pandey says in a news release. “This project had very specific requirements, including expertise in modeling transients in microreactors and the development of high-performance catalysts. The department excelled in both areas. When I reached out to Dr. Bollini and Dr. Bala, they were eager to collaborate, and everything naturally progressed from there.”

The PRIME-Fuel project will use cutting-edge mathematical modeling and SRI’s proprietary Co-Extrusion printing technology to design and manufacture the microreactor with the ability to continue producing methanol even when the renewable energy supply dips as low as 5 percent capacity. Researchers will develop a microreactor prototype capable of producing 30 MJe/day of methanol while meeting energy efficiency and process yield targets over a three-year span. When scaled up to a 100 megawatts electricity capacity plant, it can be capable of producing 225 tons of methanol per day at a lower cost. The researchers predict five years as a “reasonable” timeline of when this can hit the market.

“What we are building here is a prototype or proof of concept for a platform technology, which has diverse applications in the entire energy and chemicals industry,” Pandey continues. “Right now, we are aiming to produce methanol, but this technology can actually be applied to a much broader set of energy carriers and chemicals.”

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Cemvita expands in Brazil with acquisition, new leader

going global

Houston industrial biotech company Cemvita has announced two strategic moves to advance its operations in Brazil.

The company, which utilizes synthetic biology to transform carbon emissions into valuable bio-based chemicals, acquired a complementary technology that expands its IP and execution of scale-up capacity, according to a news release. The acquisition will bring additional synthetic biology toolsets that Cemvita believes will assist with compressing and commercializing timelines.

The company also appointed Luciano Zamberlan as vice president of operations based in Brazil.

Zamberlan will lead operational execution, site readiness and early commissioning activities in Brazil. He brings more than 20 years of experience in biotechnology to the role. He recently served as director of engineering at Raízen, Brazil’s largest ethanol producer and the world’s largest producer of sugarcane ethanol. At Raízen, he coordinated the implementation of four greenfield plants and oversaw operational teams and process optimization for second-generation ethanol (E2G) and biogas.

“I am very pleased to join Cemvita, a company at the forefront of transforming waste into valuable, sustainable resources,” Zamberlan said in the release. “My expertise in scaling-up innovation, coupled with my experience in structuring and commissioning greenfield industrial operations, is perfectly aligned with Cemvita's mission and I'm eager to bring my energy and drive to accelerate Cemvita's industrial performance and contribute for a circular future.”

Cemvita expanded to Brazil in January to help capitalize on the country’s progressive regulatory framework, including Brazil’s Fuel of the Future Law, enacted in 2024. The law mandates an increase in the biodiesel content of diesel fuel, starting from 15 percent in March and increasing to 20 percent by 2030. It also requires the adoption of Sustainable Aviation Fuel (SAF) and for domestic flights to reduce greenhouse gas emissions by 1 percent starting in 2027, growing to 10 percent reduction by 2037.

“These steps enable us to augment Brazil’s longstanding bioindustrial ecosystem with next-generation capabilities, reducing early commercialization risk and expanding optionality for future product platforms,” Marcio Silva, CTO of Cemvita, said in the news release. “Together, they strengthen our ability to move from proof-of-concept to industrial reality.”

Greentown Labs partners with California software developer on new center

power partnership

Greentown Labs has partnered with Los Angeles-based software development firm Nominal to launch the new Industrial Center of Excellence at Greentown's Houston incubator.

Nominal will provide access to its connected test and operations stack to help engineers working at Greentown Houston startups boost their "efficiency, automation, and scalability," according to a news release. The news comes just a few days after Greentown announced a partnership with Houston-based EnergyTech Nexus, which will also open an investor lounge on-site.

"Our mission is to remove friction for innovative entrepreneurs, so they can rapidly scale their transformative solutions," Lawson Gow, Greentown's Head of Houston, said in the release. "The Industrial Center of Excellence with Nominal will complement Greentown's robust prototyping, equipment, and lab offerings to accelerate entrepreneurs' ability to bring disruptive technologies out of the lab and into the world."

According to Greentown and Nominal, the partnership will support startups that are focused on decarbonizing the manufacturing sector, which Greentown estimates represents about a third of startups in its Houston incubator.

The new center will host specialized workshops and Nominal will now offer weekly office hours for Greentown startups.

"The future belongs to teams who can deliver resilient hardware faster than anyone else," Bryce Strauss, co-founder of Nominal, added in the statement. "Competitive edge is defined by test velocity. Nominal is building a connected stack of software tools where every discipline works shoulder-to-shoulder to make confident, real-time decisions."

Nominal, which supports engineering work in the aerospace, energy, automotive and defense industries, closed a $75 million series B round this summer.