Bayport HRS will be an innovative pipeline-based hydrogen refueling station. Photo via Getty Images

The Port of Houston Authority (Port Houston) received a $25 million grant from The Department of Transportation and the Federal Highway Administration this month to go toward a hydrogen fueling station for heavy-duty trucks in Bayport, known as Bayport HRS.

The funds will also support a public-private collaboration between the port and industrial gas company Linde Inc. with additional partners GTI Energy, Argonne National Laboratory and Center for Houston’s Future, according to a statement.

“The Houston Ship Channel is the busiest waterway in the nation,” Charlie Jenkins, Port Houston CEO, said in the news release. “As one of the channel’s leading advocates, Port Houston is committed to fostering sustainability, resilience, collaboration, and quality of life for the community and nation we serve.”

Bayport HRS will be an innovative pipeline-based hydrogen refueling station (HRS), which will be able to offer high fueling throughput and be publicly accessible. Linde will design, construct, own and operate the new facility.

“Partnering with Linde, one of the largest hydrogen producers in the world and owner of a major pipeline complex that serves the Houston region, is in line with the Port’s strategy of engaging the Houston Ship Channel industry on projects that benefit the community, promote sustainability, decarbonization, and clean transportation,” Rich Byrnes, Port Houston chief infrastructure officer, said in the news release.

Bayport HRS supports the Port’s Sustainability Action Plan and its net-zero emissions goal by 2050. The project will also align with national strategies for clean hydrogen and transportation decarbonization.

Another goal of the collaboration is to support the U.S. National Blueprint for Transportation Decarbonization, the National Zero-Emission Freight Corridor Strategy, and U.S. National Clean H2 Strategy and Roadmap.

In 2024, Port Houston secured nearly $57M in grant funding in sustainability efforts.

"The Houston/Gulf Coast's regional clean hydrogen economy continues to gain momentum, including with announcements such as this,” Brett Perlman, managing director at the Center for Houston's Future, said in the news release. "We are excited to be part of this important work to build out a clean hydrogen transportation network. This is also another great example of collaboration among business, government and community to get things done."

The grant, funded by the federal Inflation Reduction Act, will help promote cleaner air, reduced emissions, and green jobs. Photo via Getty Images

Port Houston secures $3M from EPA program to fund green initiatives, clean tech

money moves

Port Houston’s PORT SHIFT program is receiving nearly $3 million from the U.S. Environmental Protection Agency’s Clean Ports Program.

The grant, funded by the federal Inflation Reduction Act, will help promote cleaner air, reduced emissions, and green jobs.

“With its ambitious PORT SHIFT program, Houston is taking a bold step toward a cleaner, more sustainable future, and I’m proud to have helped make this possible by voting for the Inflation Reduction Act,” U.S. Rep. Sylvia Garcia says in a news release.

“PORT SHIFT is about more than moving cargo — it’s about building a port that’s prepared for the future and a community that’s healthier and stronger,” Garcia adds. “With investments in zero-emission trucks, cleaner cargo handling, workforce training, and community engagement, Port Houston is setting the standard for what ports across America can accomplish.”

Joaquin Martinez, a member of the Houston City Council, says one of the benefits of the grant will be ensuring power readiness for all seven wharves at the Bayport Container Terminal.

The Inflation Reduction Act allocated $3 billion to the EPA’s Clean Ports Program to fund zero-emission equipment and climate planning at U.S. ports.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Rice launches new center focused on membrane technology for energy conversion

new material

Rice University announced the formation of a new center focused on developing advanced membrane materials and separation technologies for the energy transition.

Known as the Rice Center for Membrane Excellence, or RiCeME, the center will aim to secure funding to develop more efficient and sustainable membrane separation practices and advance next-generation membrane materials, which are essential in energy conversion processes.

The center, part of Rice's Water Technologies Entrepreneurship and Research, or WaTER Institute, also plans to drive water reuse and resource recovery solutions, perform bench-scale testing and pilot-scale demonstrations, and even host workforce development workshops and symposia on membrane science and technology.

The announcement was made during the Rice Global Paris Center Symposium in Paris.

RiCeME will be led by Menachem Elimelech, the Nancy and Clint Carlson Professor in Civil and Environmental Engineering and Chemical and Biomolecular Engineering at Rice. His research focuses on membrane-based processes, advanced materials and nanotechnology.

“Houston is the ideal place to drive innovation in membrane separation technologies,” Elimelech said in a news release. “Membranes are critical for energy-related separations such as fuel cells, carbon capture and water purification. Our work will enhance efficiency and sustainability in these key sectors.”

RiCeME will work on building partnerships with Houston-area industries, including oil and gas, chemical, and energy sectors, according to the release. It will also rely on interdisciplinary research by engaging faculty from civil and environmental engineering, chemical and biomolecular engineering, materials science and nanoengineering, and chemistry departments at Rice.

“Breakthroughs in membrane technology will play a crucial role in addressing energy and sustainability challenges,” Ramamoorthy Ramesh, executive vice president for research at Rice, said in a news release. “RiCeME’s interdisciplinary approach ensures that our discoveries move from the lab to real-world applications, driving innovation at the intersection of science and industry.”.

New report ranks Texas in the middle for sustainable development

room to improve

Texas appears in the middle of the pack in a new ranking of the best states for sustainable development.

SmileHub, a nonprofit that rates charities, examined 20 key metrics to create its list of the best states for sustainable development. Among the metrics it studied were the share of urban tree cover, green buildings per capita and clean energy jobs per capita. Once SmileHub crunched all the numbers, it put Texas in 24th place — one notch above average.

The United Nations defines sustainable development as “meeting present needs without compromising the chances of future generations to meet their needs.”

Here’s how Texas fared in several of SmileHub’s ranking categories:

  • No. 2 for water efficiency and sustainability
  • No. 7 for presence of wastewater reuse initiatives
  • No. 18 for environmental protection charities per capita
  • No. 25 for green buildings per capita
  • No. 34 for clean energy jobs per capita
  • No. 34 for industrial toxins per square mile
  • No. 38 for share of tree cover in urban areas

California leads the SmileHub list, followed by Vermont, Massachusetts, Oregon and Maryland.

When it comes to water, a 2024 report commissioned by Texas 2036, a nonpartisan think tank, recommends that Texas invest $154 billion over the next 50 years in new water supply and infrastructure to support sustainable growth, according to the Greater Houston Partnership.

“The report underscores a stark reality: a comprehensive, sustainable funding strategy for water is necessary to keep Texas economically resilient and competitive,” the partnership says.

Houston-led project earns $1 million in federal funding for flood research

team work

A team from Rice University, the University of Texas at Austin and Texas A&M University have been awarded a National Science Foundation grant under the CHIRRP—or Confronting Hazards, Impacts and Risks for a Resilient Planet—program to combat flooding hazards in rural Texas.

The grant totals just under $1 million, according to a CHIRRP abstract.

The team is led by Avantika Gori, assistant professor of civil and environmental engineering at Rice. Other members include Rice’s James Doss-Gollin, Andrew Juan at Texas A&M University and Keri Stephens at UT Austin.

Researchers from Rice’s Severe Storm Prediction, Education and Evacuation from Disasters Center and Ken Kennedy Institute, Texas A&M’s Institute for A Disaster Resilient Texas and the Technology & Information Policy Institute at UT Austin are part of the team as well.

Their proposal includes work that introduces a “stakeholder-centered framework” to help address rural flood management challenges with community input.

“Our goal is to create a flood management approach that truly serves rural communities — one that’s driven by science but centers around the people who are impacted the most,” Gori said in a news release.

The project plans to introduce a performance-based system dynamics framework that integrates hydroclimate variability, hydrology, machine learning, community knowledge, and feedback to give researchers a better understanding of flood risks in rural areas.

The research will be implemented in two rural Texas areas that struggle with constant challenges associated with flooding. The case studies aim to demonstrate how linking global and regional hydroclimate variability with local hazard dynamics can work toward solutions.

“By integrating understanding of the weather dynamics that cause extreme floods, physics-based models of flooding and AI or machine learning tools together with an understanding of each community’s needs and vulnerabilities, we can better predict how different interventions will reduce a community’s risk,” Doss-Gollin said in a news release.

At the same time, the project aims to help communities gain a better understanding of climate science in their terms. The framework will also consider “resilience indicators,” such as business continuity, transportation access and other features that the team says more adequately address the needs of rural communities.

“This work is about more than flood science — it’s also about identifying ways to help communities understand flooding using words that reflect their values and priorities,” said Stephens. “We’re creating tools that empower communities to not only recover from disasters but to thrive long term.”