Houston-based Citroniq Chemicals has secured its series A funding. Photo via Getty Images

A fresh $12 million round of funding will enable Houston-based Citroniq Chemicals to propel planning, design, and construction of its first decarbonization plant.

An unidentified multinational energy technology company led the series A round, with participation from Houston-based Lummus Technology Ventures and cooperation from the State of Nebraska. The Citroniq plant, which will produce green polypropylene, will be located in Nebraska.

“Lummus’ latest investment in Citroniq builds on this progress and strengthens our partnership, working together to lower carbon emissions in the plastics industry,” Leon de Bruyn, president and CEO of Lummus Technology, says in a news release.

Citroniq is putting together a decarbonization platform designed to annually capture 2 million metric tons of greenhouse gas emissions at each plant. The company plans to invest more than $5 billion into its green polypropylene plants. Polypropylene is a thermoplastic resin commonly used for injection molding.

The series A round “is just the first step in our journey towards building multiple biomanufacturing hubs, boosting the Nebraska bioeconomy by converting local ethanol into valuable bioplastics,” says Kelly Knopp, co-founder and CEO of Citroniq.

Citroniq’s platform for the chemical and plastics industries uses technology and U.S.-produced ethanol to enable low-cost carbon capture. Citroniq’s process permanently sequesters carbon into a useful plastic pellet.

Lummus Technology licenses process technologies for clean fuels, renewables, petrochemicals, polymers, gas processing and supply lifecycle services, catalysts, proprietary equipment, and digital transformation.

———

This article originally ran on InnovationMap.

Two companies with big presences in Houston are collaborating to provide hybrid intelligence with AI. Photo via Getty Images

European co. with Houston HQ enters into collaboration to accelerate AI in energy

team work

Two tech companies have teamed up to accelerate artificial intelligence adaption in the energy industry.

Houston-based Radix announced a strategic partnership with data and artificial intelligence company Cognite, a Norwegian company that's expanded to the U.S. by way of Houston, and will aim to implement AI "to streamline and contextualize data management and asset performance across oil and gas, energy, petrochemicals, and manufacturing industries,” according to a news release.

Radix is a global technology solutions company with expertise in engineering, data and software technology, and operations. The partnership allows Radix to utilize Cognite’s Industrial DataOps platform, and Cognite Data Fusion. The combination of Cognite Data Fusion’s innovative technology and Radix’s engineering intelligence will aim to tackle the problem of extracting information from large data pools in non-integrated systems.

According to Radix, the utilization of hybrid intelligence with AI to sort through data in a more refined manner, companies will be able to more intelligently isolate problem areas and work on solutions. This will help with energy optimization, mass balance for production accounting, and inventory management for critical materials according to Radix. Hybrid intelligence can also help accelerate access to data across various independent systems.

“Our partnership with Cognite has shown that we can bring our unique expertise together to empower companies with the hybrid intelligent tools they need to get to the data that becomes valuable and actionable information," Global Head of Alliances & Practices at Radix Flavio Guimarães says in a news release. “With Cognite Data Fusion, we help businesses streamline their data, thus helping to boost decision-making with real-time insights and drive cost reductions across the organization.”

With Cognite Data Fusionn’s solutions aim to enhance scalability, usability, and overall value for users and businesses, in what Radix has called an Industrial Applications Library. Some solutions will be showcased from October 14-15 at Cognite Impact 2024 in Houston, which will include an operational view on actionable insights, improvement workflows for field process, improvements and operational efficiency, OEE monitoring and control, preventative insights for monitoring.

“The Industrial Applications Library creates added value to the digital transformation journey helping companies to achieve optimal operational excellence and significant cost savings for our customers," Trudi Hable, head of strategic alliances for North America at Radix, adds. “Radix’s expertise and intelligence will ensure that real-time information is being relayed to Cognite Data Fusion in an efficient manner, allowing for the right data to be brought to the right people.”

From left to right: Trudi Hable and Flavio Guimarães of Radix and Laxmi Akkaraji of Cognite. Photos courtesy of Cognite

Asking ChatGPT what all was made from petroleum produced surprising results - the answer: everything. Photo by Sanket Mishra/Unsplash

Energy truly IS everywhere according to ChatGPT

EVERYDAY ENERGY

I sat down to have a conversation with ChatGPT from OpenAI about energy by-products; specifically, everyday items we use that contain some form of petrochemicals. My first prompt was rather broad, so I wasn’t surprised to get back a rather broad answer highlighting product categories instead of specific examples. Plastics, synthetic fibers, cleaning products, personal care products, medicines, paints & coatings, and adhesives were all succinctly summarized, but I wanted to dive deeper.

Given that AI has an almost limitless reach, I asked for a comprehensive list of all the products we use in everyday life that are made from petrochemicals. Turns out, ChatGPT has some healthy boundaries, so it pushed back, only offering a slightly more detailed list of the categories produced from the first prompt.

Not to be deterred, I asked for additional examples. I didn’t want to continue getting spoon-fed 10 items at a time, so I asked for 200. Less than comprehensive, more than the crumbs I was getting.

In entertaining fashion, ChatGPT told me compiling a list of 200 items might be challenging, but that it could offer up 100. The brazen negotiation made me smile.

I complimented the list and nudged a bit, encouraging ChatGPT it could come up with another 100 items if it tried. Much like a teenager wishes to stave off further questioning from a nosy parent, ChatGPT proffered up a second response of 100 items–almost half of which were simply things before which it added the qualifier “synthetic.” Salty.

As my intention is not to bore you, but rather enhance the knowledge of our readers by understanding how pervasive petrochemical products are in our everyday life, I settled on a more direct inquiry with a capped demand prompt: “What would you say are the 10 most surprising things in common everyday use that contain petrochemical products?”

Most of the answers featured wax-based products, like lotions, crayons, and lipstick–not necessarily earth-shattering realizations given my familiarity with cosmetics as petroleum by-products. I was pleasantly surprised to learn that chewing gum, with its synthetic rubber base enabling theoretically endless chewing, is derived from petroleum. I was also surprised to learn that many artificial sweeteners, like saccharin and aspartame, are made from petrochemicals. Huh.

There was one item on the list, however, that helped me see how truly pervasive the energy industry is, and not just for petrochemicals. Tucked in nonchalantly at #6 was Deodorant. My brain jumped immediately to the waxy base of a solid sweat deterrent, but my eyes got a curveball. ChatGPT writes, “Many deodorants contain aluminum, which is often derived from bauxite, a mineral that is usually mined from the earth using petroleum-powered machinery.” Now that was an answer I wasn’t expecting.

While my initial inference stood true – the smooth glide of a buttery solid antiperspirant is without a doubt derived from petrochemicals (not to mention the plastic packaging surrounding it), I wasn’t expecting ChatGPT to rope in the oft petroleum-fueled tools used to make said product. If that’s true, then nearly every item on the planet is derived from petroleum. Or at the very least, some source of energy. Regardless of whether the machinery used runs on gasoline, electricity, or wind power, literally almost everything that is produced on this earth is related to the energy industry.

Even if it’s hand-made, it’s technically still energy-adjacent, assuming we all bathe regularly with soap, yet another on the list of commonly used items derived from petroleum by-products. It’s certainly directly powering some manual activities, for those busting stress and bad breath with gum, or drinking a diet soda to power through. No pun intended.

I share this amusing tale simply to clarify the ubiquitous nature of energy in all parts of the modern world. As we look toward the #futureofenergy, we must be cognizant of its universal reach. It’s not necessarily realistic to switch from one source of energy to another overnight, but we do have a responsibility to seek cleaner, healthier, more efficient sources of energy while sustaining the life to which we have all grown accustomed.

Much like ChatGPT thought she couldn’t come up with 200 items derived from petroleum products, many think Houston will be unable to drive the Energy Transition, given our extensive petroleum focus. But like so many fellow Houstonians before us, we love a good challenge.

Just keep prompting us, and we’ll eventually unlock infinite potential for the #futureofenergy. It’s a limitless time to be in Houston, absorbing wisdom the city so willingly wants to share with the growing ecosystem of innovators. Just ask the growing number of almost 5,000 Energy-related firms in Houston. We’re just getting started.

------

Lindsey Ferrell is a contributing writer to EnergyCapitalHTX and founder of Guerrella & Co.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston scientists develop 'recharge-to-recycle' reactor for lithium-ion batteries

reduce, recharge, recycle

Engineers at Rice University have developed a cleaner, innovative process to turn end-of-life lithium-ion battery waste into new lithium feedstock.

The findings, recently published in the journal Joule, demonstrate how the team’s new “recharge-to-recycle” reactor recharges the battery’s waste cathode materials to coax out lithium ions into water. The team was then able to form high-purity lithium hydroxide, which was clean enough to feed directly back into battery manufacturing.

The study has major implications for the electric vehicle sector, which significantly contributes to the waste stream from end-of-life battery packs. Additionally, lithium tends to be expensive to mine and refine, and current recycling methods are energy- and chemical-intensive.

“Directly producing high-purity lithium hydroxide shortens the path back into new batteries,” Haotian Wang, associate professor of chemical and biomolecular engineering, co-corresponding author of the study and co-founder of Solidec, said in a news release. “That means fewer processing steps, lower waste and a more resilient supply chain.”

Sibani Lisa Biswal, chair of Rice’s Department of Chemical and Biomolecular Engineering and the William M. McCardell Professor in Chemical Engineering, also served as co-corresponding author on the study.

“We asked a basic question: If charging a battery pulls lithium out of a cathode, why not use that same reaction to recycle?” Biswal added in the release. “By pairing that chemistry with a compact electrochemical reactor, we can separate lithium cleanly and produce the exact salt manufacturers want.”

The new process also showed scalability, according to Rice. The engineers scaled the device to 20 square centimeters, then ran a 1,000-hour stability test and processed 57 grams of industrial black mass supplied by industry partner Houston-based TotalEnergies. The results produced lithium hydroxide that was more than 99 percent pure. It also maintained an average lithium recovery rate of nearly 90 percent over the 1,000-hour test, showing its durability. The process also worked across multiple battery chemistries, including lithium iron phosphate, lithium manganese oxide and nickel-manganese-cobalt variants.

Looking ahead, the team plans to scale the process and consider ways it can sustain high efficiency for greater lithium hydroxide concentrations.

“We’ve made lithium extraction cleaner and simpler,” Biswal added in the release. “Now we see the next bottleneck clearly. Tackle concentration, and you unlock even better sustainability.

DOE taps Texas companies for $56M in Strategic Petroleum Reserve deliveries

reserve refill

Two companies with ties to the Houston area have been awarded federal contracts totaling nearly $55.8 million to supply about 1 million barrels of crude oil for the nation’s depleted Strategic Petroleum Reserve.

Houston-based Trafigura Trading will provide two-thirds of the oil, and Dallas-based Energy Transfer Crude Marketing will provide the remaining one-third. Energy Transfer, the parent company of Energy Transfer Crude Marketing, operates a 330-acre oil terminal at the Houston Ship Channel.

The U.S. Department of Energy (DOE), which awarded the contracts, said Trafigura and Energy Transfer will deliver the crude oil from Dec. 1 through Jan. 31 to the Strategic Petroleum Reserve’s Bryan Mound storage site near Freeport.

The Strategic Petroleum Reserve, the world’s largest emergency supply of crude oil, can hold up to 714 million barrels of crude oil across 61 underground salt caverns at four sites along the Gulf Coast. The reserve currently contains 410 million barrels of crude oil. During the pandemic, the Biden administration ordered a 180 million-barrel drawdown from the reserve to help combat high gas prices triggered by Russia’s war with Ukraine.

The four strategic reserve sites are connected to 24 Gulf Coast refineries, and another six refineries in Kentucky, Michigan and Ohio.

“Awarding these contracts marks another step in the important process of refilling this national security asset,” U.S. Energy Secretary Chris Wright said.

In March, Wright estimated it would take $20 billion and many years to fill the Strategic Petroleum Reserve to its maximum capacity, according to Reuters

.