A barge hit a bridge in Galveston, resulting in an oil spill. No injuries were reported. Photo via portofgalveston.com

A barge slammed into a bridge pillar in Galveston, Texas, on Wednesday, spilling oil into waters near busy shipping channels and closing the only road to a small neighboring island. No injuries were reported.

The impact sent pieces of the bridge, which connects Galveston to Pelican Island, tumbling on top of the barge and shut down a stretch of waterway so crews could clean up the spill. The accident knocked one man off the vessel and into the water, but he was quickly recovered and was not injured, said Galveston County Sheriff’s Office Maj. Ray Nolen.

Ports along the Texas coast are hubs of international trade, but experts said the collision was unlikely to result in serious economic disruptions since it occurred in a lesser-used waterway. The island is on the opposite side of Galveston Island’s beaches that draw millions of tourists each year.

The accident happened shortly before 10 a.m. after a tugboat operator pushing two barges lost control of them, said David Flores, a bridge superintendent with the Galveston County Navigation District.

“The current was very bad, and the tide was high," Flores said. “He lost it.”

Pelican Island is only a few miles wide and is home to Texas A&M University at Galveston, a large shipyard and industrial facilities. Fewer than 200 people were on the campus when the collision happened, and all were eventually allowed to drive on the bridge to leave. The marine and maritime research institute said it plans to remain closed until at least Friday. Students who live on campus were allowed to remain there, but university officials warned those who live on campus and leave “should be prepared to remain off campus for an unknown period of time.”

The accident came weeks after a cargo ship crashed into a support column of the Francis Key Bridge in Baltimore on March 26, killing six construction workers.

The tugboat in Texas was pushing bunker barges, which are fuel barges for ships, Flores said. The barge, which is owned by Martin Petroleum, has a 30,000-gallon capacity, but it's not clear how much leaked into the bay, said Galveston County spokesperson Spencer Lewis. He said about 6.5 miles (10.5 kilometers) of the waterway were shut down because of the spill.

The affected area is miles away from the Gulf Intracoastal Waterway, which sees frequent barge traffic, and the Houston Ship Channel, a large shipping channel for ocean-going vessels. Aside from the environmental impact of the spill, the region is unlikely to see large economic disruption as a result of the accident, said Marcia Burns, a maritime transportation expert at the University of Houston

“Because Pelican Island is a smaller location, which is not in the heart of commercial events, then the impact is not as devastating," Burns said. “It’s a relatively smaller impact.”

At the bridge, a large piece of broken concrete and debris from the railroad hung over the side and on top of the barge that rammed into the passageway. Flores said the rail line only serves as protection for the structure and has never been used.

Opened in 1960, the Pelican Island Causeway Bridge was rated as “Poor” according to the Federal Highway Administration’s 2023 National Bridge Inventory released last June.

The overall rating of a bridge is based on whether the condition of any of its individual components — the deck, superstructure, substructure or culvert, if present — is rated poor or below.

In the case of the Pelican Island Causeway Bridge, inspectors rated the deck in “Satisfactory Condition,” the substructure in “Fair Condition” and the superstructure — or the component that absorbs the live traffic load — in “Poor Condition.”

The Texas Department of Transportation had been scheduled in the summer of 2025 to begin construction on a project to replace the bridge with a new one. The project was estimated to cost $194 million. In documents provided during a virtual public meeting last year, the department said the bridge has “reached the end of its design lifespan, and needs to be replaced.” The agency said it has spent over $12 million performing maintenance and repairs on the bridge in the past decade.

The bridge has one main steel span that measures 164 feet (50 meters), and federal data shows it was last inspected in December 2021. It’s unclear from the data if a state inspection took place after the Federal Highway Administration compiled the data.

The bridge had an average daily traffic figure of about 9,100 cars and trucks, according to a 2011 estimate.

___

Lozano reported from Houston. Associated Press reporters Christopher L. Keller in Albuquerque, New Mexico; Valerie Gonzalez in McAllen, Texas; Acacia Coronado in Austin, Texas; and Ken Miller in Oklahoma City contributed to this report.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

UH's $44 million mass timber building slashed energy use in first year

building up

The University of Houston recently completed assessments on year one of the first mass timber project on campus, and the results show it has had a major impact.

Known as the Retail, Auxiliary, and Dining Center, or RAD Center, the $44 million building showed an 84 percent reduction in predicted energy use intensity, a measure of how much energy a building uses relative to its size, compared to similar buildings. Its Global Warming Potential rating, a ratio determined by the Intergovernmental Panel on Climate Change, shows a 39 percent reduction compared to the benchmark for other buildings of its type.

In comparison to similar structures, the RAD Center saved the equivalent of taking 472 gasoline-powered cars driven for one year off the road, according to architecture firm Perkins & Will.

The RAD Center was created in alignment with the AIA 2030 Commitment to carbon-neutral buildings, designed by Perkins & Will and constructed by Houston-based general contractor Turner Construction.

Perkins & Will’s work reduced the building's carbon footprint by incorporating lighter mass timber structural systems, which allowed the RAD Center to reuse the foundation, columns and beams of the building it replaced. Reused elements account for 45 percent of the RAD Center’s total mass, according to Perkins & Will.

Mass timber is considered a sustainable alternative to steel and concrete construction. The RAD Center, a 41,000-square-foot development, replaced the once popular Satellite, which was a food, retail and hangout center for students on UH’s campus near the Science & Research Building 2 and the Jack J. Valenti School of Communication.

The RAD Center uses more than a million pounds of timber, which can store over 650 metric tons of CO2. Aesthetically, the building complements the surrounding campus woodlands and offers students a view both inside and out.

“Spaces are designed to create a sense of serenity and calm in an ecologically-minded environment,” Diego Rozo, a senior project manager and associate principal at Perkins & Will, said in a news release. “They were conceptually inspired by the notion of ‘unleashing the senses’ – the design celebrating different sights, sounds, smells and tastes alongside the tactile nature of the timber.”

In addition to its mass timber design, the building was also part of an Energy Use Intensity (EUI) reduction effort. It features high-performance insulation and barriers, natural light to illuminate a building's interior, efficient indoor lighting fixtures, and optimized equipment, including HVAC systems.

The RAD Center officially opened Phase I in Spring 2024. The third and final phase of construction is scheduled for this summer, with a planned opening set for the fall.

Experts on U.S. energy infrastructure, sustainability, and the future of data

Guest column

Digital infrastructure is the dominant theme in energy and infrastructure, real estate and technology markets.

Data, the byproduct and primary value generated by digital infrastructure, is referred to as “the fifth utility,” along with water, gas, electricity and telecommunications. Data is created, aggregated, stored, transmitted, shared, traded and sold. Data requires data centers. Data centers require energy. The United States is home to approximately 40% of the world's data centers. The U.S. is set to lead the world in digital infrastructure advancement and has an opportunity to lead on energy for a very long time.

Data centers consume vast amounts of electricity due to their computational and cooling requirements. According to the United States Department of Energy, data centers consume “10 to 50 times the energy per floor space of a typical commercial office building.” Lawrence Berkeley National Laboratory issued a report in December 2024 stating that U.S. data center energy use reached 176 TWh by 2023, “representing 4.4% of total U.S. electricity consumption.” This percentage will increase significantly with near-term investment into high performance computing (HPC) and artificial intelligence (AI). The markets recognize the need for digital infrastructure build-out and, developers, engineers, investors and asset owners are responding at an incredible clip.

However, the energy demands required to meet this digital load growth pose significant challenges to the U.S. power grid. Reliability and cost-efficiency have been, and will continue to be, two non-negotiable priorities of the legal, regulatory and quasi-regulatory regime overlaying the U.S. power grid.

Maintaining and improving reliability requires physical solutions. The grid must be perfectly balanced, with neither too little nor too much electricity at any given time. Specifically, new-build, physical power generation and transmission (a topic worthy of another article) projects must be built. To be sure, innovative financial products such as virtual power purchase agreements (VPPAs), hedges, environmental attributes, and other offtake strategies have been, and will continue to be, critical to growing the U.S. renewable energy markets and facilitating the energy transition, but the U.S. electrical grid needs to generate and move significantly more electrons to support the digital infrastructure transformation.

But there is now a third permanent priority: sustainability. New power generation over the next decade will include a mix of solar (large and small scale, offsite and onsite), wind and natural gas resources, with existing nuclear power, hydro, biomass, and geothermal remaining important in their respective regions.

Solar, in particular, will grow as a percentage of U.S grid generation. The Solar Energy Industries Association (SEIA) reported that solar added 50 gigawatts of new capacity to the U.S. grid in 2024, “the largest single year of new capacity added to the grid by an energy technology in over two decades.” Solar is leading, as it can be flexibly sized and sited.

Under-utilized technology such as carbon capture, utilization and storage (CCUS) will become more prominent. Hydrogen may be a potential game-changer in the medium-to-long-term. Further, a nuclear power renaissance (conventional and small modular reactor (SMR) technologies) appears to be real, with recent commitments from some of the largest companies in the world, led by technology companies. Nuclear is poised to be a part of a “net-zero” future in the United States, also in the medium-to-long term.

The transition from fossil fuels to zero carbon renewable energy is well on its way – this is undeniable – and will continue, regardless of U.S. political and market cycles. Along with reliability and cost efficiency, sustainability has become a permanent third leg of the U.S. power grid stool.

Sustainability is now non-negotiable. Corporate renewable and low carbon energy procurement is strong. State renewable portfolio standards (RPS) and clean energy standards (CES) have established aggressive goals. Domestic manufacturing of the equipment deployed in the U.S. is growing meaningfully and in politically diverse regions of the country. Solar, wind and batteries are increasing less expensive. But, perhaps more importantly, the grid needs as much renewable and low carbon power generation as possible - not in lieu of gas generation, but as an increasingly growing pairing with gas and other technologies. This is not an “R” or “D” issue (as we say in Washington), and it's not an “either, or” issue, it's good business and a physical necessity.

As a result, solar, wind and battery storage deployment, in particular, will continue to accelerate in the U.S. These clean technologies will inevitably become more efficient as the buildout in the U.S. increases, investments continue and technology advances.

At some point in the future (it won’t be in the 2020s, it could be in the 2030s, but, more realistically, in the 2040s), the U.S. will have achieved the remarkable – a truly modern (if not entirely overhauled) grid dependent largely on a mix of zero and low carbon power generation and storage technology. And when this happens, it will have been due in large part to the clean technology deployment and advances over the next 10 to 15 years resulting from the current digital infrastructure boom.

---

Hans Dyke and Gabbie Hindera are lawyers at Bracewell. Dyke's experience includes transactions in the electric power and oil and gas midstream space, as well as transactions involving energy intensive industries such as data storage. Hindera focuses on mergers and acquisitions, joint ventures, and public and private capital market offerings.

Rice researchers' quantum breakthrough could pave the way for next-gen superconductors

new findings

A new study from researchers at Rice University, published in Nature Communications, could lead to future advances in superconductors with the potential to transform energy use.

The study revealed that electrons in strange metals, which exhibit unusual resistance to electricity and behave strangely at low temperatures, become more entangled at a specific tipping point, shedding new light on these materials.

A team led by Rice’s Qimiao Si, the Harry C. and Olga K. Wiess Professor of Physics and Astronomy, used quantum Fisher information (QFI), a concept from quantum metrology, to measure how electron interactions evolve under extreme conditions. The research team also included Rice’s Yuan Fang, Yiming Wang, Mounica Mahankali and Lei Chen along with Haoyu Hu of the Donostia International Physics Center and Silke Paschen of the Vienna University of Technology. Their work showed that the quantum phenomenon of electron entanglement peaks at a quantum critical point, which is the transition between two states of matter.

“Our findings reveal that strange metals exhibit a unique entanglement pattern, which offers a new lens to understand their exotic behavior,” Si said in a news release. “By leveraging quantum information theory, we are uncovering deep quantum correlations that were previously inaccessible.”

The researchers examined a theoretical framework known as the Kondo lattice, which explains how magnetic moments interact with surrounding electrons. At a critical transition point, these interactions intensify to the extent that the quasiparticles—key to understanding electrical behavior—disappear. Using QFI, the team traced this loss of quasiparticles to the growing entanglement of electron spins, which peaks precisely at the quantum critical point.

In terms of future use, the materials share a close connection with high-temperature superconductors, which have the potential to transmit electricity without energy loss, according to the researchers. By unblocking their properties, researchers believe this could revolutionize power grids and make energy transmission more efficient.

The team also found that quantum information tools can be applied to other “exotic materials” and quantum technologies.

“By integrating quantum information science with condensed matter physics, we are pivoting in a new direction in materials research,” Si said in the release.