The project would nearly eliminate the emissions associated with power and steam generation at the Dow plant in Seadrift, Texas. Getty Images

Dow, a major producer of chemicals and plastics, wants to use next-generation nuclear reactors for clean power and steam at a Texas manufacturing complex instead of natural gas.

Dow's subsidiary, Long Mott Energy, applied Monday to the U.S. Nuclear Regulatory Commission for a construction permit. It said the project with X-energy, an advanced nuclear reactor and fuel company, would nearly eliminate the emissions associated with power and steam generation at its plant in Seadrift, Texas, avoiding roughly 500,000 metric tons of planet-warming greenhouse gas emissions annually.

If built and operated as planned, it would be the first U.S. commercial advanced nuclear power plant for an industrial site, according to the NRC.

For many, nuclear power is emerging as an answer to meet a soaring demand for electricity nationwide, driven by the expansion of data centers and artificial intelligence, manufacturing and electrification, and to stave off the worst effects of a warming planet. However, there are safety and security concerns, the Union of Concerned Scientists cautions. The question of how to store hazardous nuclear waste in the U.S. is unresolved, too.

Dow wants four of X-energy's advanced small modular reactors, the Xe-100. Combined, those could supply up to 320 megawatts of electricity or 800 megawatts of thermal power. X-energy CEO J. Clay Sell said the project would demonstrate how new nuclear technology can meet the massive growth in electricity demand.

The Seadrift manufacturing complex, at about 4,700 acres, has eight production plants owned by Dow and one owned by Braskem. There, Dow makes plastics for a variety of uses including food and beverage packaging and wire and cable insulation, as well as glycols for antifreeze, polyester fabrics and bottles, and oxide derivatives for health and beauty products.

Edward Stones, the business vice president of energy and climate at Dow, said submitting the permit application is an important next step in expanding access to safe, clean, reliable, cost-competitive nuclear energy in the United States. The project is supported by the Department of Energy’s Advanced Reactor Demonstration Program.

The NRC expects the review to take three years or less. If a permit is issued, construction could begin at the end of this decade, so the reactors would be ready early in the 2030s, as the natural gas-fired equipment is retired.

A total of four applicants have asked the NRC for construction permits for advanced nuclear reactors. The NRC issued a permit to Abilene Christian University for a research reactor and to Kairos Power for one reactor and two reactor test versions of that company's design. It's reviewing an application by Bill Gates and his energy company, TerraPower, to build an advanced reactor in Wyoming.

X-energy is also collaborating with Amazon to bring more than 5 gigawatts of new nuclear power projects online across the United States by 2039, beginning in Washington state. Amazon and other tech giants have committed to using renewable energy to meet the surging demand from data centers and artificial intelligence and address climate change.

Republicans and Democrats, environmental groups and the oil and gas industry all oppose the temporary sites. Photo via uh.edu

Supreme Court confronts what to do with growing pile of nuclear waste

The Debate Continues

The Supreme Court will hear arguments Wednesday in a fight over plans to store nuclear waste at sites in rural Texas and New Mexico.President Joe Biden's administration and a private company with a license for the Texas facility appealed a ruling by the 5th U.S. Circuit Court of Appeals that found that the Nuclear Regulatory Commission exceeded its authority in granting the license. The outcome of the case will affect plans for a similar facility in New Mexico roughly 40 miles away.

On this issue, President Donald Trump's administration is sticking with the views of its predecessor, even with Texas Gov. Greg Abbott, a Republican ally of Trump, on the other side.

The push for temporary storage sites is part of the complicated politics of the nation’s so far futile quest for a permanent underground storage facility.

Here's what to know about the case.

Where is spent nuclear fuel stored now?

Roughly 100,000 tons of spent fuel, some of it dating from the 1980s, is piling up at current and former nuclear plant sites nationwide and growing by more than 2,000 tons a year. The waste was meant to be kept there temporarily before being deposited deep underground.

A plan to build a national storage facility northwest of Las Vegas at Yucca Mountain has been mothballed because of staunch opposition from most Nevada residents and officials.

The Nuclear Regulatory Commission has said that the temporary storage sites are needed because existing nuclear plants are running out of room. The presence of the spent fuel also complicates plans to decommission some plants, the Justice Department said in court papers.

Where would it go?

The NRC granted the Texas license to Interim Storage Partners LLC for a facility that could take up to 5,000 metric tons of spent nuclear fuel rods from power plants and 231 million tons of other radioactive waste. The facility would be built next to an existing dump site in Andrews County for low-level waste, such as protective clothing and other material that has been exposed to radioactivity. The Andrews County site is about 350 miles west of Dallas, near the Texas-New Mexico state line.

The New Mexico facility would be in Lea County, in the southeastern part of the state near Carlsbad. The NRC gave a license for the site to Holtec International.

The licenses would allow for 40 years of storage, although opponents contend the facilities would be open indefinitely because of the impasse over permanent storage.

Political opposition is bipartisan

Republicans and Democrats, environmental groups and the oil and gas industry all oppose the temporary sites.

Abbott is leading Texas' opposition to the storage facility. New Mexico Democratic Gov. Michelle Lujan Grisham also is opposed to the facility planned for her state.

A brief led by Republican Texas Sen. Ted Cruz on behalf of several lawmakers calls the nuclear waste contemplated for the two facilities an “enticing target for terrorists” and argues it's too risky to build the facility atop the Permian Basin, the giant oil and natural gas region that straddles Texas and New Mexico.

Elected leaders of communities on the routes the spent fuel likely would take to New Mexico and Texas also are opposed.

What are the issues before the court?

The justices will consider whether, as the NRC argues, the states forfeited their right to object to the licensing decisions because they declined to join in the commission’s proceedings.

Two other federal appeals courts, in Denver and Washington, that weighed the same issue ruled for the agency. Only the 5th Circuit allowed the cases to proceed.

The second issue is whether federal law allows the commission to license temporary storage sites. Opponents are relying on a 2022 Supreme Court decision that held that Congress must act with specificity when it wants to give an agency the authority to regulate on an issue of major national significance. In ruling for Texas, the 5th Circuit agreed that what to do with the nation’s nuclear waste is the sort of “major question” that Congress must speak to directly.

But the Justice Department has argued that the commission has long-standing authority to deal with nuclear waste reaching back to the 1954 Atomic Energy Act.

Ten-year-old radioactive waste is currently being debated about by New Mexico officials. Photo via Getty Images

Texas, New Mexico officials contemplate what to do with nuclear waste

in debate

Federal officials gathered Tuesday in southern New Mexico to mark the 25th anniversary of the nation’s only underground repository for radioactive waste resulting from decades of nuclear research and bomb making.

Carved out of an ancient salt formation about half a mile (800 meters) deep, the Waste Isolation Pilot Plant outside Carlsbad has taken in around 13,850 shipments from more than a dozen national laboratories and other sites since 1999.

The anniversary comes as New Mexico raises concerns about the federal government’s plans for repackaging and shipping to WIPP a collection of drums filled with the same kind of materials that prompted a radiation release at the repository in 2014.

That mishap contaminated parts of the underground facility and forced an expensive, nearly three-year closure. It also delayed the federal government’s multibillion-dollar cleanup program and prompted policy changes at labs and other sites across the U.S.

Meanwhile, dozens of boxes containing drums of nuclear waste that were packed at the Los Alamos National Laboratory to be stored at WIPP were rerouted to Texas, where they've remained ever since at an above-ground holding site.

After years of pressure from Texas environmental regulators, the U.S. Department of Energy announced last year that it would begin looking at ways to treat the waste so it could be safely transported and disposed of at WIPP.

But the New Mexico Environment Department is demanding more safety information, raising numerous concerns in letters to federal officials and the contractor that operates the New Mexico repository.

“Parking it in the desert of West Texas for 10 years and shipping it back does not constitute treatment,” New Mexico Environment Secretary James Kenney told The Associated Press in an interview. “So that’s my most substantive issue — that time does not treat hazardous waste. Treatment treats hazardous waste.”

The 2014 radiation release was caused by improper packaging of waste at Los Alamos. Investigators determined that a runaway chemical reaction inside one drum resulted from the mixing of nitrate salts with organic kitty litter that was meant to keep the interior of the drum dry.

Kenney said there was an understanding following the breach that drums containing the same materials had the potential to react. He questioned how that risk could have changed since the character and composition of the waste remains the same.

Scientists at Sandia National Laboratories in Albuquerque were contracted by the DOE to study the issue. They published a report in November stating that the federal government's plan to repackage the waste with an insulating layer of air-filled glass micro-bubbles would offer “additional thermal protection."

The study also noted that ongoing monitoring suggests that the temperature of the drums is decreasing, indicating that the waste is becoming more stable.

DOE officials did not immediately answer questions about whether other methods were considered for changing the composition of the waste, or what guarantees the agency might offer for ensuring another thermal reaction doesn't happen inside one of the drums.

The timetable for moving the waste also wasn't immediately clear, as the plan would need approval from state and federal regulators.

Kenney said some of the state's concerns could have been addressed had the federal government consulted with New Mexico regulators before announcing its plans. The state in its letters pointed to requirements under the repository's permit and federal laws for handling radioactive and hazardous wastes.

Don Hancock, with the Albuquerque-based watchdog group Southwest Research and Information Center, said shipments of the untreated waste also might not comply with the Nuclear Regulatory Commission's certification for the containers that are used.

“This is a classic case of waste arriving somewhere and then being stranded — 10 years in the case of this waste,” Hancock said. “That’s a lesson for Texas, New Mexico, and any other state to be sure that waste is safe to ship before it’s allowed to be shipped.”

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston energy expert looks ahead to climate tech trends of 2026

Guest Column

There is no sugar‑coating it: 2025 was a rough year for many climate tech founders. Headlines focused on policy rollbacks and IRA uncertainty, while total climate tech venture and growth investment only inched up to about 40.5 billion dollars, an 8% rise that felt more like stabilization than the 2021–2022 boom. Deal count actually fell 18% and investor participation dropped 19%, with especially steep pullbacks in carbon and transportation, as capital concentrated in fewer, larger, “safer” bets. Growth-stage funding jumped 78% while early-stage seed rounds dropped 20%.

On top of that, tariff battles and shifting trade rules added real supply‑chain friction. In the first half of 2025, solar and wind were still 91% of new U.S. capacity additions, but interconnection delays, equipment uncertainty, and changing incentive structures meant many projects stalled or were repriced mid‑stream. Founders who had raised on 2021‑style valuations and policy optimism suddenly found themselves stuck in limbo, extending runway or shutting down.

The bright spots were teams positioned at the intersection of climate and the AI power surge. Power demand from data centers is now a primary driver of new climate‑aligned offtake, pulling capital toward firm, 24/7 resources. Geothermal developers like Fervo Energy, Sage Geosystems and XGS did well. Google’s enhanced‑geothermal deal in Nevada scales from a 3.5 MW pilot to about 115 MW under a clean transition tariff, nearly 30× growth in geothermal capacity enabled by a single corporate buyer. Meta and others are exploring similar pathways to secure round‑the‑clock low‑carbon power for hyperscale loads.

Beyond geothermal, nuclear is clearly back on the strategic menu. In 2024, Google announced the first U.S. corporate nuclear offtake, committing to purchase 500 MW from Kairos Power’s SMR fleet by 2035, a signal that big tech is willing to underwrite new firm‑power technologies when the decarbonization and reliability story is compelling. Meta just locked in 6.6GW of nuclear capacity through deals with Vistra, Oklo, and TerraPower.

Growth investors and corporates are increasingly clustering around platforms that can monetize long‑duration PPAs into data‑center demand rather than purely policy‑driven arbitrage.

Looking into 2026, the same trends will continue:

Solar and wind

Even with policy headwinds, solar and wind continue to dominate new capacity. In the first half of 2025 they made up about 90% of new U.S. electricity capacity. Over the 2025–2028 period, FERC’s ‘high‑probability’ pipeline points to on the order of 90–93 GW of new utility‑scale solar and roughly 20–23 GW of new wind, far outpacing other resources.

Storage and flexibility

Solar plus batteries is now the default build—solar and storage together account for about 81% of expected 2025 U.S. capacity additions, with storage deployments scaling alongside renewables to keep grids flexible. Thermal storage and other grid‑edge flexibility solutions are also attracting growing attention as ways to smooth volatile load.

EVs and transport

EV uptake continues to anchor long‑term battery demand; while transportation funding cooled in 2025, EV sales and charging build‑out are still major components of clean‑energy demand‑side investment

Buildings

Heat pumps, smart HVAC, and efficient water heating are now the dominant vectors for building‑sector decarbonization. Heating and cooling startups alone have raised billions since 2020, with nearly 700 million dollars going into HVAC‑focused companies in 2024, and that momentum carried into 2025.

Hydrogen

The green hydrogen narrative has faded, but analysts still see hydrogen as essential for steel, chemicals, and other hard‑to‑abate sectors, with large‑scale projects and offtake frameworks under development rather than headline hype.

CCS/CCUS

After years of skepticism, more large CCS projects are finally reaching FID and coming online, helped by a mix of tax credits and industrial demand, which makes CCS look more investable than it did in the pre‑IRA era.

So, yes, 2025 was a downer from the easy‑money, policy‑euphoria years. But the signal beneath the noise is clear: capital is rotating toward technologies with proven unit economics, real offtake (especially from AI‑driven power loads), and credible paths to scale—not away from climate altogether.

---

Nada Ahmed is the founding partner at Houston-based Energy Tech Nexus.

Houston startup advances methane tech, sets sights on growth capital

making milestones

Houston-based climatech startup Aquanta Vision achieved key milestones in 2025 for its enhanced methane-detection app and has its focus set on future funding.

Among the achievements was the completion of the National Science Foundation’s Advanced Sensing and Computation for Environmental Decision-making (ASCEND) Engine. The program, based in Colorado and Wyoming, awarded a total of $3 million in grants to support the commercialization of projects that tackle critical resilience challenges, such as water security, wildfire prediction and response, and methane emissions.

Aquanta Vision’s funding went toward commercializing its NETxTEN app, which automates leak detection to improve accuracy, speed and safety. The company estimates that methane leaks cost the U.S. energy industry billions of dollars each year, with 60 percent of leaks going undetected. Additionally, methane leaks account for around 10 percent of natural gas's contribution to climate change, according to MIT’s climate portal.

Throughout the months-long ASCEND program, Aquanta Vision moved from the final stages of testing into full commercial deployment of NETxTEN. The app can instantly identify leaks via its physics-based algorithms and raw video output of optical gas imaging cameras. It does not require companies to purchase new hardware, requires no human intervention and is universally compatible with all optical gas imaging (OGI) cameras. During over 12,000 test runs, 100 percent of leaks were detected by NETxTEN’s system, according to the company.

The app is geared toward end-users in the oil and gas industry who use OGI cameras to perform regular leak detection inspections and emissions monitoring. Aquanta Vision is in the process of acquiring new clients for the app and plans to scale commercialization between now and 2028, Babur Ozden, the company’s founder and CEO, tells Energy Capital.

“In the next 16 months, (our goal is to) gain a number of key customers as major accounts and OEM partners as distribution channels, establish benefits and stickiness of our product and generate growing, recurring revenues for ourselves and our partners,” he says.

The company also received an investment for an undisclosed amount from Marathon Petroleum Corp. late last year. The funding complemented follow-on investments from Ecosphere Ventures and Odyssey Energy Advisors.

Ozden says the funds will go toward the extension of its runway through the end of 2026. It will also help Aquanta Vision grow its team.

Ozden and Marcus Martinez, a product systems engineer, founded Aquanta Vision in 2023 and have been running it as a two-person operation. The company brought on four interns last year, but is looking to add more staff.

Ozden says the company also plans to raise a seed round in 2027 “to catapult us to a rapid growth phase in 2028-29.”

HETI discusses Houston’s energy leadership, from pathways to progress

The View From HETI

In 2024, RMI in collaboration with Mission Possible Partnership (MPP) and the Houston Energy Transition Initiative (HETI) mapped out ambitious scenarios for the region’s decarbonization journey. The report showed that with the right investments and technologies, Houston could achieve meaningful emissions reductions while continuing to power the world. That analysis painted a picture of what could be possible by 2030 and 2050.

Today, the latest HETI progress report shows Houston is not just planning anymore — the region is delivering.

Real results, right now

The numbers tell a compelling story. Since 2017, HETI’s member companies have invested more than $95 billion in low-carbon infrastructure, technologies, and R&D. That’s not a commitment for the future—that’s capital deployed, projects built, and operations transformed.

The results showed industry-wide reductions of 20% in total Scope 1 greenhouse gas emissions and a remarkable 55% decrease in methane emissions from global operations. These aren’t projections—they’re actual reductions happening across refineries, chemical plants, and production facilities throughout the Houston region.

How Houston is leading

What makes Houston’s approach work is its practical, technology-driven focus. Companies across the energy value chain are implementing solutions that work today:

  • Electrifying operations and integrating renewable power
  • Deploying advanced methane detection and elimination technologies
  • Upgrading equipment for greater efficiency
  • Capturing and storing carbon at commercial scale
  • Developing breakthrough technologies from geothermal to advanced nuclear

Take ExxonMobil’s Permian Basin electrification, Shell and Chevron’s lower-carbon Whale project, or BP’s massive Tangguh carbon capture project in Indonesia. These aren’t pilot programs—they’re multi-billion dollar investments demonstrating that decarbonization and energy production go hand in hand.

From scenarios to strategy

The RMI analysis identified three key pathways forward: enabling operational decarbonization, accelerating low-carbon technology scale-up, and creating carbon accounting mechanisms. Houston’s energy leaders have embraced all three.

The momentum is undeniable. Companies are setting ambitious 2030 and 2050 targets with clear roadmaps. New projects are reaching final investment decisions. Innovation ecosystems are flourishing. And critically, this progress is creating jobs and driving economic growth across the region.

Why this matters

Houston isn’t just managing the energy transition—it’s proving what’s possible when you combine world-class engineering expertise, integrated infrastructure, access to capital, and a commitment to both energy security and emissions reduction.

The dual challenge of delivering more energy with less emissions isn’t theoretical in Houston—it’s operational reality. Every ton of CO₂ reduced, every efficiency gain achieved, and every technology deployed demonstrates that we can meet growing global energy demand while making measurable progress on climate goals.

The path forward

The journey from last year’s scenarios to this year’s results shows something crucial: when industry, policymakers, and communities align around practical solutions, transformation accelerates.

Houston’s energy leadership isn’t about choosing between reliable energy and environmental progress, it’s about delivering both. And based on the progress we’re seeing, the momentum is only building.

———

Read the full analysis here. This article originally appeared on the Greater Houston Partnership's Houston Energy Transition Initiative blog. HETI exists to support Houston's future as an energy leader. For more information about the Houston Energy Transition Initiative, EnergyCapitalHTX's presenting sponsor, visit htxenergytransition.org.