Two UH-affiliated organizations scored DOE funding for advancing superconductivity projects. Photo courtesy of UH

A program within the U.S. Department of Energy has deployed $10 million into three projects working on superconducting tape innovation. Two of these projects are based on research from the University of Houston.

The DOE's Advanced Research Projects Agency-Energy, or ARPA-E, issued the funding through its Novel Superconducting Technologies for Conductors Exploratory Topic. Superconductivity — found only in certain materials — is a focus point for the DOE because it allows for the conduction of direct electric current without resistance or energy loss.

The demand for HTS, or high-temperature superconducting, tapes has risen as the country moves toward net-zero energy, driving up the cost of the materials, which are manufactured outside of the U.S. Here's where the DOE wants to help.

“If we can improve superconductors and manufacture them here in the United States, we can ultimately speed up the energy transition through enabling cost savings, faster production, and improved capability,” ARPA-E Director Evelyn N. Wang says in the DOE press release. “The teams [selected] will all pursue ARPA-E’s mission to lower emissions, bolster national security, increase energy independence and improve energy efficiency through their critical research.”

Selva Research Group, a team from UH focused on scaling HTS tape production and led by Venkat Selvamanickam, M.D. Anderson Chair Professor of Mechanical Engineering and director of the Advanced Manufacturing Institute, received a $2 million grant.

“Even though our superconducting tape is three times better than today’s industry products, for us to be able to take it to full-scale commercialization, we need to produce it faster and at a lower cost while maintaining its high quality,” Selvamanickam says in a UH press release. “This funding is to address this challenge and it’s an important step forward towards commercialization of our technology.”

The other UH-based team is MetOx Technologies, which secured $3 million in funding to support the advancement of its proprietary manufacturing technology for its HTS wire. Co-founded in 1998 by Alex Ignatiev, UH professor emeritus of physics and a fellow of the National Academy of Inventors, who also serves as the company’s chief science officer, MetOx plans to open its new manufacturing facility by the end of the year.

“This ARPA-E funding not only allows MetOx to advance its HTS wire fabrication process that I developed at UH, but also signifies the DOE’s recognition that MetOx is important,” Ignatiev says in the release. “The cost-effective HTS product that MetOx is developing at scale is critical to the national and global application of HTS for the world’s energy needs.”

The ARPA-E funding emphasizes the need for advancement of HTS tape innovation, and UH-affiliated groups receiving two of the three grants indicates the school is a leader in the space — something UH Vice President for Energy and Innovation Ramanan Krishnamoorti is proud of.

“These awards recognize the relevance and quality of the research at UH and our commitment to making a meaningful impact by addressing society’s needs and challenges by transitioning innovations out of research labs and into the real world,” Krishnamoorti says in the release.

High-temperature superconducting tapes have a high potential in the energy transition. Photo courtesy of UH

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston-led project earns $1 million in federal funding for flood research

team work

A team from Rice University, the University of Texas at Austin and Texas A&M University have been awarded a National Science Foundation grant under the CHIRRP—or Confronting Hazards, Impacts and Risks for a Resilient Planet—program to combat flooding hazards in rural Texas.

The grant totals just under $1 million, according to a CHIRRP abstract.

The team is led by Avantika Gori, assistant professor of civil and environmental engineering at Rice. Other members include Rice’s James Doss-Gollin, Andrew Juan at Texas A&M University and Keri Stephens at UT Austin.

Researchers from Rice’s Severe Storm Prediction, Education and Evacuation from Disasters Center and Ken Kennedy Institute, Texas A&M’s Institute for A Disaster Resilient Texas and the Technology & Information Policy Institute at UT Austin are part of the team as well.

Their proposal includes work that introduces a “stakeholder-centered framework” to help address rural flood management challenges with community input.

“Our goal is to create a flood management approach that truly serves rural communities — one that’s driven by science but centers around the people who are impacted the most,” Gori said in a news release.

The project plans to introduce a performance-based system dynamics framework that integrates hydroclimate variability, hydrology, machine learning, community knowledge, and feedback to give researchers a better understanding of flood risks in rural areas.

The research will be implemented in two rural Texas areas that struggle with constant challenges associated with flooding. The case studies aim to demonstrate how linking global and regional hydroclimate variability with local hazard dynamics can work toward solutions.

“By integrating understanding of the weather dynamics that cause extreme floods, physics-based models of flooding and AI or machine learning tools together with an understanding of each community’s needs and vulnerabilities, we can better predict how different interventions will reduce a community’s risk,” Doss-Gollin said in a news release.

At the same time, the project aims to help communities gain a better understanding of climate science in their terms. The framework will also consider “resilience indicators,” such as business continuity, transportation access and other features that the team says more adequately address the needs of rural communities.

“This work is about more than flood science — it’s also about identifying ways to help communities understand flooding using words that reflect their values and priorities,” said Stephens. “We’re creating tools that empower communities to not only recover from disasters but to thrive long term.”

Can the Texas grid handle extreme weather conditions across regions?

Guest Column

From raging wildfires to dangerous dust storms and fierce tornadoes, Texans are facing extreme weather conditions at every turn across the state. Recently, thousands in the Texas Panhandle-South Plains lost power as strong winds ranging from 35 to 45 mph with gusts upwards of 65 mph blew through. Meanwhile, many North Texas communities are still reeling from tornadoes, thunderstorms, and damaging winds that occurred earlier this month.

A report from the National Oceanic and Atmospheric Administration found that Texas led the nation with the most billion-dollar weather and climate disasters in 2023, while a report from Texas A&M University researchers indicates Texas will experience twice as many 100-degree days, 30-50% more urban flooding and more intense droughts 15 years from now if present climate trends persist.

With the extreme weather conditions increasing in Texas and nationally, recovering from these disasters will only become harder and costlier. When it comes to examining the grid’s capacity to withstand these volatile changes, we’re past due. As of now, the grid likely isn’t resilient enough to make do, but there is hope.

Where does the grid stand now?

Investment from utility companies have resulted in significant improvements, but ongoing challenges remain, especially as extreme weather events become more frequent. While the immediate fixes have helped improve reliability for the time being, it won't be enough to withstand continuous extreme weather events. Grid resiliency will require ongoing efforts over one-time bandaid approaches.

What can be done?

Transmission and distribution infrastructure improvements must vary geographically because each region of Texas faces a different set of hazards. This makes a one-size-fits-all solution impossible. We’re already seeing planning and investment in various regions, but sweeping action needs to happen responsibly and quickly to protect our power needs.

After investigators determined that the 2024 Smokehouse Creek fire (the largest wildfire in Texas history) was caused by a decayed utility pole breaking, it raised the question of whether the Panhandle should invest more in wrapping poles with fire retardant material or covering wires so they are less likely to spark.

In response, Xcel Energy (the Panhandle’s version of CenterPoint) filed its initial System Resiliency Plan with the Public Utility Commission of Texas, with proposed investments to upgrade and strengthen the electric grid and ensure electricity for about 280,000 homes and businesses in Texas. Tailored to the needs of the Texas Panhandle and South Plains, the $539 million resiliency plan will upgrade equipment’s fire resistance to better stand up to extreme weather and wildfires.

Oncor, whose territories include Dallas-Fort Worth and Midland-Odessa, analyzed more than two decades of weather damage data and the impact on customers to identify the priorities and investments needed across its service area. In response, it proposed investing nearly $3 billion to harden poles, replace old cables, install underground wires, and expand the company's vegetation management program.

What about Houston?

While installing underground wires in a city like Dallas makes for a good investment in grid resiliency, this is not a practical option in the more flood-prone areas of Southeast Texas like Houston. Burying power lines is incredibly expensive, and extended exposure to water from flood surges can still cause damage. Flood surges are also likely to seriously damage substations and transformers. When those components fail, there’s no power to run through the lines, buried or otherwise.

As part of its resiliency plan for the Houston metro area, CenterPoint Energy plans to invest $5.75 billion to strengthen the power grid against extreme weather. It represents the largest single grid resiliency investment in CenterPoint’s history and is currently the most expensive resiliency plan filed by a Texas electric utility. The proposal calls for wooden transmission structures to be replaced with steel or concrete. It aims to replace or strengthen 5,000 wooden distribution poles per year until 2027.

While some of our neighboring regions focus on fire resistance, others must invest heavily in strengthening power lines and replacing wooden poles. These solutions aim to address the same critical and urgent goal: creating a resilient grid that is capable of withstanding the increasingly frequent and severe weather events that Texans are facing.

The immediate problem at hand? These solutions take time, meaning we’re likely to encounter further grid instability in the near future.

---

Sam Luna is director at BKV Energy, where he oversees brand and go-to-market strategy, customer experience, marketing execution, and more.

The longest conveyer belt in the U.S. is moving sand in Texas

The Dune Express

It's longer than the width of Rhode Island, snakes across the oil fields of the southwest U.S. and crawls at 10 mph – too slow for a truck and too long for a train.

It's a new sight: the longest conveyer belt in America.

Atlas Energy Solutions, a Texas-based oil field company, has installed a 42-mile long conveyer belt to transport millions of tons of sand for hydraulic fracturing. The belt the company named “The Dune Express” runs from tiny Kermit, Texas, and across state borders into Lea County, New Mexico. Tall and lanky with lids that resemble solar modules, the steel structure could almost be mistaken for a roller coaster.

In remote West Texas, there are few people to marvel at the unusual machine in Kermit, a city with a population of less than 6,000, where the sand is typically hauled by tractor-trailers. During fracking, liquid is pumped into the ground at a high pressure to create holes, or fractures, that release oil. The sand helps keep the holes open as water, oil and gas flow through it.

But moving the sand by truck is usually a long and potentially dangerous process, according to CEO John Turner. He said massive trucks moving sand and other industrial goods are a common site in the oil-rich Permian Basin and pose a danger to other drivers.

“Pretty early on, the delivery of sand via truck was not only inefficient, it was dangerous,” he said.

The conveyor belt, with a freight capacity of 13 tons, was designed to bypass and trudge alongside traffic.

Innovation isn't new to the oil and gas industry, nor is the idea to use a conveyor belt to move materials around. Another conveyer belt believed to be the world’s longest conveyor — at 61 miles long — carries phosphorous from a mine in Western Sahara on the northwest coast of Africa, according to NASA Earth Observatory.

When moving sand by truck became a nuisance, an unprecedented and risky investment opportunity arose: constructing a $400 million machine to streamline the production of hydraulic fracturing. The company went public in March 2023, in part, to help pay for the conveyor belt and completed its first delivery in January, Turner said.

The sand sits in a tray-shaped pan with a lid that can be taken off at any point, but most of it gets offloaded into silos near the Texas and New Mexico border. Along its miles-long journey, the sand is sold and sent to fracking companies who move it by truck for the remainder of the trip.

Keeping the rollers on the belt aligned and making sure it runs smoothly are the biggest maintenance obstacles, according to Turner. The rollers are equipped with chips that signal when it's about to fail and need to be replaced. This helps prevent wear and tear and keep the machine running consistently, Turner said.

The belt cuts through a large oil patch where environmentalists have long raised concerns about the industry disturbing local habitats, including those of the sagebrush lizard, which was listed as an endangered species last year by the U.S. Fish and Wildlife Service.

“In addition to that, we know that the sand will expedite further drilling nearby,” said Luke Metzger, executive director of Environment Texas. “We could see more drilling than we otherwise would, which means more air pollution, more spills than we otherwise would.”

The Dune Express currently runs for about 12 to 14 hours a day at roughly half capacity but the company expects to it to be rolling along at all hours later this year.

In New Mexico, Lea County Commissioner Brad Weber said he hopes the belt alleviates traffic on a parallel highway where car crashes are frequent.

“I believe it’s going to make a very positive impact here,” he said.