The U.S. National Highway Traffic Safety Administration has raised concerns about Tesla's public messaging on its "Full Self-Driving" system. Photo via tesla.com

The U.S. government's highway safety agency says Tesla is telling drivers in public statements that its vehicles can drive themselves, conflicting with owners manuals and briefings with the agency saying the electric vehicles need human supervision.

The National Highway Traffic Safety Administration is asking the company to “revisit its communications” to make sure messages are consistent with user instructions.

The request came in a May email to the company from Gregory Magno, a division chief with the agency's Office of Defects Investigation. It was attached to a letter seeking information on a probe into crashes involving Tesla's “Full Self-Driving” system in low-visibility conditions. The letter was posted Friday on the agency's website.

The agency began the investigation in October after getting reports of four crashes involving “Full Self-Driving" when Teslas encountered sun glare, fog and airborne dust. An Arizona pedestrian was killed in one of the crashes.

Critics, including Transportation Secretary Pete Buttigieg, have long accused Tesla of using deceptive names for its partially automated driving systems, including “Full Self-Driving” and “Autopilot,” both of which have been viewed by owners as fully autonomous.

The letter and email raise further questions about whether Full Self-Driving will be ready for use without human drivers on public roads, as Tesla CEO Elon Musk has predicted. Much of Tesla's stock valuation hinges on the company deploying a fleet of autonomous robotaxis.

Musk, who has promised autonomous vehicles before, said the company plans to have autonomous Models Y and 3 running without human drivers next year. Robotaxis without steering wheels would be available in 2026 starting in California and Texas, he said.

A message was sent Friday seeking comment from Tesla.

In the email, Magno writes that Tesla briefed the agency in April on an offer of a free trial of “Full Self-Driving” and emphasized that the owner's manual, user interface and a YouTube video tell humans that they have to remain vigilant and in full control of their vehicles.

But Magno cited seven posts or reposts by Tesla's account on X, the social media platform owned by Musk, that Magno said indicated that Full Self-Driving is capable of driving itself.

“Tesla's X account has reposted or endorsed postings that exhibit disengaged driver behavior,” Magno wrote. “We believe that Tesla's postings conflict with its stated messaging that the driver is to maintain continued control over the dynamic driving task."

The postings may encourage drivers to see Full Self-Driving, which now has the word “supervised” next to it in Tesla materials, to view the system as a “chauffeur or robotaxi rather than a partial automation/driver assist system that requires persistent attention and intermittent intervention by the driver,” Magno wrote.

On April 11, for instance, Tesla reposted a story about a man who used Full Self-Driving to travel 13 miles (21 kilometers) from his home to an emergency room during a heart attack just after the free trial began on April 1. A version of Full Self-Driving helped the owner "get to the hospital when he needed immediate medical attention,” the post said.

In addition, Tesla says on its website that use of Full Self-Driving and Autopilot without human supervision depends on “achieving reliability" and regulatory approval, Magno wrote. But the statement is accompanied by a video of a man driving on local roads with his hands on his knees, with a statement that, “The person in the driver's seat is only there for legal reasons. He is not doing anything. The car is driving itself,” the email said.

In the letter seeking information on driving in low-visibility conditions, Magno wrote that the investigation will focus on the system's ability to perform in low-visibility conditions caused by “relatively common traffic occurrences.”

Drivers, he wrote, may not be told by the car that they should decide where Full Self-Driving can safely operate or fully understand the capabilities of the system.

“This investigation will consider the adequacy of feedback or information the system provides to drivers to enable them to make a decision in real time when the capability of the system has been exceeded,” Magno wrote.

The letter asks Tesla to describe all visual or audio warnings that drivers get that the system “is unable to detect and respond to any reduced visibility condition.”

The agency gave Tesla until Dec. 18 to respond to the letter, but the company can ask for an extension.

That means the investigation is unlikely to be finished by the time President-elect Donald Trump takes office in January, and Trump has said he would put Musk in charge of a government efficiency commission to audit agencies and eliminate fraud. Musk spent at least $119 million in a campaign to get Trump elected, and Trump has spoken against government regulations.

Auto safety advocates fear that if Musk gains some control over NHTSA, the Full Self-Driving and other investigations into Tesla could be derailed.

Musk even floated the idea of him helping to develop national safety standards for self-driving vehicles.

“Of course the fox wants to build the henhouse,” said Michael Brooks, executive director of the Center for Auto Safety, a nonprofit watchdog group.

He added that he can't think of anyone who would agree that a business mogul should have direct involvement in regulations that affect the mogul’s companies.

“That’s a huge problem for democracy, really,” Brooks said.

Investigators will look into the ability of “Full Self-Driving” to “detect and respond appropriately to reduced roadway visibility conditions, and if so, the contributing circumstances for these crashes." Photo courtesy of Tesla

US to probe Texas-based Tesla's self-driving system after pedestrian killed in low visibility conditions

eyes on the road

The U.S. government's road safety agency is investigating Tesla's “Full Self-Driving” system after getting reports of crashes in low-visibility conditions, including one that killed a pedestrian.

The National Highway Traffic Safety Administration said in documents that it opened the probe last week after the company reported four crashes when Teslas encountered sun glare, fog and airborne dust.

In addition to the pedestrian's death, another crash involved an injury, the agency said.

Investigators will look into the ability of “Full Self-Driving” to “detect and respond appropriately to reduced roadway visibility conditions, and if so, the contributing circumstances for these crashes.”

The investigation covers roughly 2.4 million Teslas from the 2016 through 2024 model years.

A message was left Friday seeking comment from Tesla, which has repeatedly said the system cannot drive itself and human drivers must be ready to intervene at all times.

Last week Tesla held an event at a Hollywood studio to unveil a fully autonomous robotaxi without a steering wheel or pedals. Musk, who has promised autonomous vehicles before, said the company plans to have autonomous Models Y and 3 running without human drivers next year. Robotaxis without steering wheels would be available in 2026 starting in California and Texas, he said.

The investigation's impact on Tesla's self-driving ambitions isn't clear. NHTSA would have to approve any robotaxi without pedals or a steering wheel, and it's unlikely that would happen while the investigation is in progress. But if the company tries to deploy autonomous vehicles in its existing models, that likely would fall to state regulations. There are no federal regulations specifically focused on autonomous vehicles, although they must meet broader safety rules.

NHTSA also said it would look into whether any other similar crashes involving “Full Self-Driving” have happened in low visibility conditions, and it will seek information from the company on whether any updates affected the system’s performance in those conditions.

“In particular, this review will assess the timing, purpose and capabilities of any such updates, as well as Tesla’s assessment of their safety impact,” the documents said.

Tesla reported the four crashes to NHTSA under an order from the agency covering all automakers. An agency database says the pedestrian was killed in Rimrock, Arizona, in November of 2023 after being hit by a 2021 Tesla Model Y. Rimrock is about 100 miles (161 kilometers) north of Phoenix.

The Arizona Department of Public Safety said in a statement that the crash happened just after 5 p.m. Nov. 27 on Interstate 17. Two vehicles collided on the freeway, blocking the left lane. A Toyota 4Runner stopped, and two people got out to help with traffic control. A red Tesla Model Y then hit the 4Runner and one of the people who exited from it. A 71-year-old woman from Mesa, Arizona, was pronounced dead at the scene.

The collision happened because the sun was in the Tesla driver's eyes, so the Tesla driver was not charged, said Raul Garcia, public information officer for the department. Sun glare also was a contributing factor in the first collision, he added.

Tesla has twice recalled “Full Self-Driving” under pressure from NHTSA, which in July sought information from law enforcement and the company after a Tesla using the system struck and killed a motorcyclist near Seattle.

The recalls were issued because the system was programmed to run stop signs at slow speeds and because the system disobeyed other traffic laws. Both problems were to be fixed with online software updates.

Critics have said that Tesla’s system, which uses only cameras to spot hazards, doesn’t have proper sensors to be fully self driving. Nearly all other companies working on autonomous vehicles use radar and laser sensors in addition to cameras to see better in the dark or poor visibility conditions.

Musk has said that humans drive with only eyesight, so cars should be able to drive with just cameras. He has called lidar (light detection and ranging), which uses lasers to detect objects, a “fool's errand.”

The “Full Self-Driving” recalls arrived after a three-year investigation into Tesla's less-sophisticated Autopilot system crashing into emergency and other vehicles parked on highways, many with warning lights flashing.

That investigation was closed last April after the agency pressured Tesla into recalling its vehicles to bolster a weak system that made sure drivers are paying attention. A few weeks after the recall, NHTSA began investigating whether the recall was working.

NHTSA began its Autopilot crash investigation in 2021, after receiving 11 reports that Teslas that were using Autopilot struck parked emergency vehicles. In documents explaining why the investigation was ended, NHTSA said it ultimately found 467 crashes involving Autopilot resulting in 54 injuries and 14 deaths. Autopilot is a fancy version of cruise control, while “Full Self-Driving” has been billed by Musk as capable of driving without human intervention.

The investigation that was opened Thursday enters new territory for NHTSA, which previously had viewed Tesla's systems as assisting drivers rather than driving themselves. With the new probe, the agency is focusing on the capabilities of “Full Self-Driving" rather than simply making sure drivers are paying attention.

Michael Brooks, executive director of the nonprofit Center for Auto Safety, said the previous investigation of Autopilot didn't look at why the Teslas weren't seeing and stopping for emergency vehicles.

“Before they were kind of putting the onus on the driver rather than the car,” he said. “Here they're saying these systems are not capable of appropriately detecting safety hazards whether the drivers are paying attention or not.”

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston researchers make headway on developing low-cost sodium-ion batteries

energy storage

A new study by researchers from Rice University’s Department of Materials Science and NanoEngineering, Baylor University and the Indian Institute of Science Education and Research Thiruvananthapuram has introduced a solution that could help develop more affordable and sustainable sodium-ion batteries.

The findings were recently published in the journal Advanced Functional Materials.

The team worked with tiny cone- and disc-shaped carbon materials from oil and gas industry byproducts with a pure graphitic structure. The forms allow for more efficient energy storage with larger sodium and potassium ions, which is a challenge for anodes in battery research. Sodium and potassium are more widely available and cheaper than lithium.

“For years, we’ve known that sodium and potassium are attractive alternatives to lithium,” Pulickel Ajayan, the Benjamin M. and Mary Greenwood Anderson Professor of Engineering at Rice, said in a news release. “But the challenge has always been finding carbon-based anode materials that can store these larger ions efficiently.”

Lithium-ion batteries traditionally rely on graphite as an anode material. However, traditional graphite structures cannot efficiently store sodium or potassium energy, since the atoms are too big and interactions become too complex to slide in and out of graphite’s layers. The cone and disc structures “offer curvature and spacing that welcome sodium and potassium ions without the need for chemical doping (the process of intentionally adding small amounts of specific atoms or molecules to change its properties) or other artificial modifications,” according to the study.

“This is one of the first clear demonstrations of sodium-ion intercalation in pure graphitic materials with such stability,” Atin Pramanik, first author of the study and a postdoctoral associate in Ajayan’s lab, said in the release. “It challenges the belief that pure graphite can’t work with sodium.”

In lab tests, the carbon cones and discs stored about 230 milliamp-hours of charge per gram (mAh/g) by using sodium ions. They still held 151 mAh/g even after 2,000 fast charging cycles. They also worked with potassium-ion batteries.

“We believe this discovery opens up a new design space for battery anodes,” Ajayan added in the release. “Instead of changing the chemistry, we’re changing the shape, and that’s proving to be just as interesting.”

ExxonMobil lands major partnership for clean hydrogen facility in Baytown

power deal

Exxon Mobil and Japanese import/export company Marubeni Corp. have signed a long-term offtake agreement for 250,000 tonnes of low-carbon ammonia per year from ExxonMobil’s forthcoming facility in Baytown, Texas.

“This is another positive step forward for our landmark project,” Barry Engle, president of ExxonMobil Low Carbon Solutions, said in a news release. “By using American-produced natural gas we can boost global energy supply, support Japan’s decarbonization goals and create jobs at home. Our strong relationship with Marubeni sets the stage for delivering low-carbon ammonia from the U.S. to Japan for years to come."

The companies plan to produce low-carbon hydrogen with approximately 98% of CO2 removed and low-carbon ammonia. Marubeni will supply the ammonia mainly to Kobe Power Plant, a subsidiary of Kobe Steel, and has also agreed to acquire an equity stake in ExxonMobil’s low-carbon hydrogen and ammonia facility, which is expected to be one of the largest of its kind.

The Baytown facility aims to produce up to 1 billion cubic feet daily of “virtually carbon-free” hydrogen. It can also produce more than 1 million tons of low-carbon ammonia per year. A final investment decision is expected in 2025 that will be contingent on government policy and necessary regulatory permits, according to the release.

The Kobe Power Plant aims to co-fire low-carbon ammonia with existing fuel, and reduce CO2 emissions by Japan’s fiscal year of 2030. Marubeni also aims to assist the decarbonization of Japan’s power sector and steel manufacturing industry, chemical industry, transportation industry and various others sectors.

“Marubeni will take this first step together with ExxonMobil in the aim of establishing a global low-carbon ammonia supply chain for Japan through the supply of low-carbon ammonia to the Kobe Power Plant,” Yoshiaki Yokota, senior managing executive officer at Marubeni Corp., added in the news release. “Additionally, we aim to collaborate beyond this supply chain and strive towards the launch of a global market for low-carbon ammonia. We hope to continue to actively cooperate with ExxonMobil, with a view of utilizing this experience and relationship we have built to strategically decarbonize our power projects in Japan and Southeast Asia in the near future.”

Houston expert: The role of U.S. LNG in global energy markets

guest column

The debate over U.S. Liquefied Natural Gas (LNG) exports is too often framed in misleading, oversimplified terms. The reality is clear: LNG is not just a temporary fix or a bridge fuel, it is a fundamental pillar of global energy security and economic stability. U.S. LNG is already reducing coal use in Asia, strengthening Europe’s energy balance, and driving economic growth at home. Turning away from LNG exports now would be a shortsighted mistake, undermining both U.S. economic interests and global energy security.

Ken Medlock, Senior Director of the Baker Institute’s Center for Energy Studies, provides a fact-based assessment of the U.S. LNG exports that cuts through the noise. His analysis, consistent with McKinsey work, confirms that U.S. LNG is essential to balancing global energy markets for the decades ahead. While infrastructure challenges and environmental concerns exist, the benefits far outweigh the drawbacks. If the U.S. fails to embrace its leadership in LNG, we risk giving up our position to competitors, weakening our energy resilience, and damaging national security.

LNG Export Licenses: Options, Not Guarantees

A common but deeply flawed argument against expanding LNG exports is the assumption that granting licenses guarantees unlimited exports. This is simply incorrect. As Medlock puts it, “Licenses are options, not guarantees. Projects do not move forward if they are unable to find commercial footing.”

This is critical: government approvals do not dictate market outcomes. LNG projects must navigate economic viability, infrastructure feasibility, and global demand before becoming operational. This reality should dispel fears that expanded licensing will automatically lead to an uncontrolled surge in exports or domestic price spikes. The market, not government restrictions, should determine which projects succeed.

Canada’s Role in U.S. Gas Markets

The U.S. LNG debate often overlooks an important factor: pipeline imports from Canada. The U.S. and Canadian markets are deeply intertwined, yet critics often ignore this reality. Medlock highlights that “the importance to domestic supply-demand balance of our neighbors to the north and south cannot be overstated.”

Infrastructure Constraints and Price Volatility

One of the most counterproductive policies the U.S. could adopt is restricting LNG infrastructure development. Ironically, such restrictions would not only hinder exports but also drive up domestic energy prices. Medlock’s report explains this paradox: “Constraints that either raise development costs or limit the ability to develop infrastructure tend to make domestic supply less elastic. Ironically, this has the impact of limiting exports and raising domestic prices.”

The takeaway is straightforward: blocking infrastructure development is a self-inflicted wound. It stifles market efficiency, raises costs for American consumers, and weakens U.S. competitiveness in global energy markets. McKinsey research confirms that well-planned infrastructure investments lead to greater price stability and a more resilient energy sector. The U.S. should be accelerating, not hindering, these investments.

Short-Run vs. Long-Run Impacts on Domestic Prices

Critics of LNG exports often confuse short-term price fluctuations with long-term market trends. This is a mistake. Medlock underscores that “analysis that claims overly negative domestic price impacts due to exports tend to miss the distinction between short-run and long-run elasticity.”

Short-term price shifts are inevitable, driven by seasonal demand and supply disruptions. But long-term trends tell a different story: as infrastructure improves and production expands, markets adjust, and price impacts moderate. McKinsey analysis suggests supply elasticity increases as producers respond to price signals. Policy decisions should be grounded in this broader economic reality, not reactionary fears about temporary price movements.

Assessing the Emissions Debate

The argument that restricting U.S. LNG exports will lower global emissions is fundamentally flawed. In fact, the opposite is true. Medlock warns against “engineering scenarios that violate basic economic principles to induce particular impacts.” He emphasizes that evaluating emissions must be done holistically. “Constraining U.S. LNG exports will likely mean Asian countries will continue to turn to coal for power system balance,” a move that would significantly increase global emissions.

McKinsey’s research reinforces that, on a lifecycle basis, U.S. LNG produces fewer emissions than coal. That said, there is room for improvement, and efforts should focus on minimizing methane leakage and optimizing gas production efficiency.

However, the broader point remains: restricting LNG on environmental grounds ignores the global energy trade-offs at play. A rational approach would address emissions concerns while still recognizing the role of LNG in the global energy system.

The DOE’s Commonwealth LNG Authorization

The Department of Energy’s recent conditional approval of the Commonwealth LNG project is a step in the right direction. It signals that economic growth, energy security, and market demand remain key considerations in regulatory decisions. Medlock’s analysis makes it clear that LNG exports will be driven by market forces, and McKinsey’s projections show that global demand for flexible, reliable LNG is only increasing.

The U.S. should not limit itself with restrictive policies when the rest of the world is demanding more LNG. This is an opportunity to strengthen our position as a global energy leader, create jobs, and ensure long-term energy security.

Conclusion

The U.S. LNG debate must move beyond fear-driven narratives and focus on reality. The facts are clear: LNG exports strengthen energy security, drive economic growth, and reduce global emissions by displacing coal.

Instead of restrictive policies that limit LNG’s potential, the U.S. should focus on expanding infrastructure, maintaining market flexibility, and supporting innovation to further reduce emissions. The energy transition will be shaped by market realities, not unrealistic expectations.

The U.S. has an opportunity to lead. But leadership requires embracing economic logic, investing in infrastructure, and ensuring our policies are guided by facts, not political expediency. LNG is a critical part of the global energy landscape, and it’s time to recognize its long-term strategic value.

------------

Scott Nyquist is a senior advisor at McKinsey & Company and vice chairman, Houston Energy Transition Initiative of the Greater Houston Partnership. The views expressed herein are Nyquist's own and not those of McKinsey & Company or of the Greater Houston Partnership. This article originally appeared on LinkedIn.