Very often, EVs drive like new even if they’ve clocked up the miles, writes this Houston expert. Photo via Unsplash

Americans are in the midst of getting to know electric cars up close and personal. The finer points of charging and battery technology are now becoming mainstream news.

However, there’s a secret about electric vehicles (EVs) that very few people know, because very few people have driven an electric car with 50,000 or 100,000 miles on it. Very often, EVs drive like new even if they’ve clocked up the miles. No rattles and no shakes, and importantly there is no loss of efficiency, unlike gas cars which tend to lose fuel efficiency as they age. Most strikingly, battery degradation and loss of range is often minimal — even after the odometer hits 6 digits.

What does this mean? At a time when car payments, repair costs and gas prices are all weighing on consumer wallets, we are about to enter an era when it will get easier than ever before for Americans to find a great driving, longer lasting car that saves on fuel costs and needs less maintenance.

This represents an amazing source of value for American drivers to be tapped into - plus even more positive changes for the auto sector, and the potential for new business models.

Narratives about EVs have focused on fears about battery degradation and today’s models becoming dated as technology rapidly advances. The fact that we are all habituated to replacing smartphone batteries that fade within 2 to 3 years doesn’t help.

Auto manufacturers have put 100,000 mile warranties on batteries, but this may have created the perception that this is a ceiling, rather than a floor, for what can be expected from an EV battery.

EV batteries are performing much better than your last smartphone battery. We know this with growing certainty because it’s backed up by evidence. Data reveals that older Teslas average only 12 percent loss of original range at 200,000 miles — double the warranty period.

Furthermore, battery advances are happening at an encouraging pace. You can expect that newer batteries will start with higher ranges and degrade even more slowly. And even after they do, the value shorter range will increase as charging infrastructure matures.

In other words, a 2024 Volkswagen ID.4 with 291 miles of range may be down to 260 miles by the time it has put on 100,000 miles. But in the 5 to 7 years that typically takes, the buildout of charging stations means that range will have much more utility than today.

So in sum, electric vehicles can be expected to last longer with lower maintenance. Over-the-air software upgrades, and perhaps even computing hardware upgrades, will keep them feeling modern. Charging infrastructure will improve much faster than range will degrade. And crucially for the value of these cars, the drive quality will remain great much further into product lifetime.

The trend for driving older cars is already here – the average age of a car on US roads is 12 years old and rising. But now this will shift towards better quality, plus fuel savings, for more people.

New business models and services will help customers take advantage — especially those customers for whom lower cost EVs will represent a step up and savings on the cost of living.

At Houston-based Octopus Electric Vehicles, we are doing this today with something virtually unheard of: leasing pre-owned cars. With electric cars that are 1 to 4 years old, with clean histories and in excellent cosmetic and mechanical condition but depreciated relative to new EV prices, we are frequently able to offer discounts of 30 percent or more, even against heavily incentivized lease offers from automakers. And, because EV maintenance needs are lower, we can throw in free scheduled maintenance with our monthly payment, delivered by a mobile mechanic service.

The secret value of higher-mileage EVs won’t stay secret for long. There’s no replacing first hand experience, and you can probably get that the next time you order an Uber or Lyft by choosing their EV ride options. Before your ride is up, try to guess what’s on the odometer. You may be surprised to hear from your driver that the car you thought was brand new has 50,000 or 100,000 miles on it.

———

Nathan Wyeth is the United States co-lead at Octopus Electric Vehicles.

Octopus Energy announced its new program to help make the move to electric vehicle driving easier and more affordable for Texas residents. Photo via Getty Images

Houston renewable energy co. rolls out new EV program

in the driver seat

A Houston-based renewable energy provider has announced a new program to get more electric vehicle drivers on Texas roads.

Octopus Electric Vehicles, a new initiative from Houston-based Octopus Energy Group, announced its DriveFree leasing program to help make the move to electric vehicle driving easier and more affordable for Texas residents.

“DriveFree gives you the freedom to drive without worrying about the cost of filling the tank or unexpected maintenance expenses,” Octopus EV US Co-Lead Nathan Wyeth says in a news release. “With the ‘electric fuel’ for daily driving included, DriveFree is the complete package to make EVs work for Texas drivers looking to lower their driving costs without locking themselves in.”

DriveFree will include the lease of a top-quality pre-owned car with all maintenance covered. Part of this coverage includes unlimited home charging on Octopus Energy’s home energy plan.

According to Octopus Energy Group, Texas drivers will save an average of over $1,000 per year by switching from a gas car to an EV with potential to save even more depending on the previous gas vehicle make and model. Houstonians will be able to select an EV and DriveFree plan at OctopusEV.us, get approved online, and schedule delivery by an Octopus EV Specialist.

The program will cover all maintenance and tires through a mobile mechanic service to a customer’s home or office. Leasing plans range from one to four years with mileage plans up to 25,000 miles/year, and 4 brands to choose from.

In a report by SmartAsset, Texas was No. 41 of states with the most electric vehicle chargers. Last year, the city of Houston approved $281,000 funding for the expansion of free electric vehicle rideshare services in communities that are considered underserved by utilizing services like RYDE and Evolve Houston in December. DriveFree is now in the mix in helping Texas get more involved in the mix.

“With DriveFree, we wanted to address all the concerns people have about switching to electric vehicles,” Octopus EV US Co-Lead Chris George says in the news release. “For the millions of Houstonians commuting to work, driving electric can be a money saver today. For the first time, the more miles you drive, the more your savings will be!”

Octopus Electric Vehicles is part of the U.K.’s Octopus Energy Group, which first launched Octopus Energy US in Texas in 2020 after its acquisition of Evolve Energy.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

10+ exciting energy breakthroughs made by Houston teams in 2025

Year In Review

Editor's note: As 2025 comes to a close, we're revisiting the biggest headlines and major milestones of the energy sector this year. Here are the most exciting scientific breakthroughs made by Houstonians this year that are poised to shape the future of energy:

Rice University team develops eco-friendly method to destroy 'forever chemicals' in water

Rice University researchers have developed a new method for removing PFAS from water that works 100 times faster than traditional filters. Photo via Rice University.

Rice University researchers have teamed up with South Korean scientists to develop the first eco-friendly technology that captures and destroys toxic “forever chemicals,” or PFAS, in water. The Rice-led study centered on a layered double hydroxide (LDH) material made from copper and aluminum that could rapidly capture PFAS and be used to destroy the chemicals.

UH researchers make breakthrough in cutting carbon capture costs

UH carbon capture cost cutting

A team from UH has published two breakthrough studies that could help cut costs and boost efficiency in carbon capture. Photo courtesy UH.

A team of researchers at the University of Houston has made two breakthroughs in addressing climate change and potentially reducing the cost of capturing harmful emissions from power plants. Led by Professor Mim Rahimi at UH’s Cullen College of Engineering, the team first introduced a membraneless electrochemical process that cuts energy requirements and costs for amine-based carbon dioxide capture during the acid gas sweetening process.The second breakthrough displayed a reversible flow battery architecture that absorbs CO2 during charging and releases it upon discharge.

Houston team’s discovery brings solid-state batteries closer to EV use

Houston researchers have uncovered why solid-state batteries break down and what could be done to slow the process. Photo via Getty Images.

A team of researchers from the University of Houston, Rice University and Brown University has uncovered new findings that could extend battery life and potentially change the electric vehicle landscape. Their work deployed a powerful, high-resolution imaging technique known as operando scanning electron microscopy to better understand why solid-state batteries break down and what could be done to slow the process.

Houston researchers make breakthrough on electricity-generating bacteria

A team of Rice researchers, including Caroline Ajo-Franklin and Biki Bapi Kundu, has uncovered how certain bacteria breathe by generating electricity. Photo by Jeff Fitlow/Rice University.

Research from Rice University that merges biology with electrochemistry has uncovered new findings on how some bacteria generate electricity. Research showed how some bacteria use compounds called naphthoquinones, rather than oxygen, to transfer electrons to external surfaces in a process known as extracellular respiration. In other words, the bacteria are exhale electricity as they breathe. This process has been observed by scientists for years, but the Rice team's deeper understanding of its mechanism is a major breakthrough, with implications for the clean energy and industrial biotechnology sectors, according to the university.

Rice researchers' quantum breakthrough could pave the way for next-gen superconductors

Researchers from Rice University say their recent findings could revolutionize power grids, making energy transmission more efficient. Image via Getty Images.

A study from researchers at Rice University could lead to future advances in superconductors with the potential to transform energy use. The study revealed that electrons in strange metals, which exhibit unusual resistance to electricity and behave strangely at low temperatures, become more entangled at a specific tipping point, shedding new light on these materials. The materials share a close connection with high-temperature superconductors, which have the potential to transmit electricity without energy loss, according to the researchers. By unblocking their properties, researchers believe this could revolutionize power grids and make energy transmission more efficient.

UH researchers develop breakthrough material to boost efficiency of sodium-ion batteries

A team at the University of Houston is changing the game for sodium-ion batteries. Photo via Getty Images

A research lab at the University of Houston developed a new type of material for sodium-ion batteries that could make them more efficient and boost their energy performance. The Canepa Research Laboratory is working on a new material called sodium vanadium phosphate, which improves sodium-ion battery performance by increasing the energy density. This material brings sodium technology closer to competing with lithium-ion batteries, according to the researchers.

Houston researchers make headway on developing low-cost sodium-ion batteries

Houston researchers make headway on developing low-cost sodium-ion batteries

Rice's Atin Pramanik and a team in Pulickel Ajayan's lab shared new findings that offer a sustainable alternative to lithium batteries by enhancing sodium and potassium ion storage. Photo by Jeff Fitlow/Courtesy Rice University

A new study by researchers from Rice University’s Department of Materials Science and NanoEngineering, Baylor University and the Indian Institute of Science Education and Research Thiruvananthapuram has introduced a solution that could help develop more affordable and sustainable sodium-ion batteries. The team worked with tiny cone- and disc-shaped carbon materials from oil and gas industry byproducts with a pure graphitic structure. The forms allow for more efficient energy storage with larger sodium and potassium ions, which is a challenge for anodes in battery research. Sodium and potassium are more widely available and cheaper than lithium.

Houston scientists develop 'recharge-to-recycle' reactor for lithium-ion batteries

Rice University scientists' “recharge-to-recycle” reactor has major implications for the electric vehicle sector. Photo courtesy Jorge Vidal/Rice University.

Engineers at Rice University have developed a cleaner, innovative process to turn end-of-life lithium-ion battery waste into new lithium feedstock. The findings demonstrate how the team’s new “recharge-to-recycle” reactor recharges the battery’s waste cathode materials to coax out lithium ions into water. The team was then able to form high-purity lithium hydroxide, which was clean enough to feed directly back into battery manufacturing. The study has major implications for the electric vehicle sector, which significantly contributes to the waste stream from end-of-life battery packs.

Houston researchers develop strong biomaterial that could replace plastic

A team led by M.A.S.R. Saadi and Muhammad Maksud Rahman has developed a biomaterial that they hope could be used for the “next disposable water bottle." Photo courtesy Rice University.

Collaborators from two Houston universities are leading the way in engineering a biomaterial into a scalable, multifunctional material that could potentially replace plastic. The study introduced a biosynthesis technique that aligns bacterial cellulose fibers in real-time, which resulted in robust biopolymer sheets with “exceptional mechanical properties.” Ultimately, the scientists hope this discovery could be used for the “next disposable water bottle,” which would be made by biodegradable biopolymers in bacterial cellulose, an abundant resource on Earth. Additionally, the team sees applications for the materials in the packaging, breathable textiles, electronics, food and energy sectors.

Houston researchers reach 'surprising' revelation in materials recycling efforts

A team led by Matteo Pasquali, director of Rice’s Carbon Hub, has unveiled how carbon nanotube fibers can be a sustainable alternative to materials like steel, copper and aluminum. Photo by Jeff Fitlow/ Courtesy Rice University

Researchers at Rice University have demonstrated how carbon nanotube (CNT) fibers can be fully recycled without any loss in their structure or properties. The discovery shows that CNT fibers could be used as a sustainable alternative to traditional materials like metals, polymers and the larger, harder-to-recycle carbon fibers, which the team hopes can pave the way for more sustainable and efficient recycling efforts.

UH lands $1M NSF grant to train future critical minerals workforce

workforce pipeline

The University of Houston has launched a $1 million initiative funded by the National Science Foundation to address the gap in the U.S. mineral industry and bring young experts to the field.

The program will bring UH and key industry partners together to expand workforce development and drive research that fuels innovation. It will be led by Xuqing "Jason" Wu, an associate professor of information science technology.

“The program aims to reshape public perception of the critical minerals industry, highlighting its role in energy, defense and advanced manufacturing,” Wu said in a news release. “Our program aims to showcase the industry’s true, high-tech nature.”

The project will sponsor 10 high school students and 10 community college students in Houston each year. It will include industry mentors and participation in a four-week training camp that features “immersive field-based learning experiences.”

“High school and community college students often lack exposure to career pathways in mining, geoscience, materials science and data science,” Wu added in the release. “This project is meant to ignite student interest and strengthen the U.S. workforce pipeline in the minerals industry by equipping students with technical skills, industry knowledge and career readiness.”

This interdisciplinary initiative will also work with co-principal investigators across fields at UH:

  • Jiajia Sun, Earth & Atmospheric Sciences
  • Yan Yao and Jiefu Chen, Electrical and Computer Engineering
  • Yueqin Huang, Information Science Technology

According to UH, minerals and rare earth elements have become “essential building blocks of modern life” and are integral components in technology and devices, roads, the energy industry and more.