Very often, EVs drive like new even if they’ve clocked up the miles, writes this Houston expert. Photo via Unsplash

Americans are in the midst of getting to know electric cars up close and personal. The finer points of charging and battery technology are now becoming mainstream news.

However, there’s a secret about electric vehicles (EVs) that very few people know, because very few people have driven an electric car with 50,000 or 100,000 miles on it. Very often, EVs drive like new even if they’ve clocked up the miles. No rattles and no shakes, and importantly there is no loss of efficiency, unlike gas cars which tend to lose fuel efficiency as they age. Most strikingly, battery degradation and loss of range is often minimal — even after the odometer hits 6 digits.

What does this mean? At a time when car payments, repair costs and gas prices are all weighing on consumer wallets, we are about to enter an era when it will get easier than ever before for Americans to find a great driving, longer lasting car that saves on fuel costs and needs less maintenance.

This represents an amazing source of value for American drivers to be tapped into - plus even more positive changes for the auto sector, and the potential for new business models.

Narratives about EVs have focused on fears about battery degradation and today’s models becoming dated as technology rapidly advances. The fact that we are all habituated to replacing smartphone batteries that fade within 2 to 3 years doesn’t help.

Auto manufacturers have put 100,000 mile warranties on batteries, but this may have created the perception that this is a ceiling, rather than a floor, for what can be expected from an EV battery.

EV batteries are performing much better than your last smartphone battery. We know this with growing certainty because it’s backed up by evidence. Data reveals that older Teslas average only 12 percent loss of original range at 200,000 miles — double the warranty period.

Furthermore, battery advances are happening at an encouraging pace. You can expect that newer batteries will start with higher ranges and degrade even more slowly. And even after they do, the value shorter range will increase as charging infrastructure matures.

In other words, a 2024 Volkswagen ID.4 with 291 miles of range may be down to 260 miles by the time it has put on 100,000 miles. But in the 5 to 7 years that typically takes, the buildout of charging stations means that range will have much more utility than today.

So in sum, electric vehicles can be expected to last longer with lower maintenance. Over-the-air software upgrades, and perhaps even computing hardware upgrades, will keep them feeling modern. Charging infrastructure will improve much faster than range will degrade. And crucially for the value of these cars, the drive quality will remain great much further into product lifetime.

The trend for driving older cars is already here – the average age of a car on US roads is 12 years old and rising. But now this will shift towards better quality, plus fuel savings, for more people.

New business models and services will help customers take advantage — especially those customers for whom lower cost EVs will represent a step up and savings on the cost of living.

At Houston-based Octopus Electric Vehicles, we are doing this today with something virtually unheard of: leasing pre-owned cars. With electric cars that are 1 to 4 years old, with clean histories and in excellent cosmetic and mechanical condition but depreciated relative to new EV prices, we are frequently able to offer discounts of 30 percent or more, even against heavily incentivized lease offers from automakers. And, because EV maintenance needs are lower, we can throw in free scheduled maintenance with our monthly payment, delivered by a mobile mechanic service.

The secret value of higher-mileage EVs won’t stay secret for long. There’s no replacing first hand experience, and you can probably get that the next time you order an Uber or Lyft by choosing their EV ride options. Before your ride is up, try to guess what’s on the odometer. You may be surprised to hear from your driver that the car you thought was brand new has 50,000 or 100,000 miles on it.

———

Nathan Wyeth is the United States co-lead at Octopus Electric Vehicles.

Octopus Energy announced its new program to help make the move to electric vehicle driving easier and more affordable for Texas residents. Photo via Getty Images

Houston renewable energy co. rolls out new EV program

in the driver seat

A Houston-based renewable energy provider has announced a new program to get more electric vehicle drivers on Texas roads.

Octopus Electric Vehicles, a new initiative from Houston-based Octopus Energy Group, announced its DriveFree leasing program to help make the move to electric vehicle driving easier and more affordable for Texas residents.

“DriveFree gives you the freedom to drive without worrying about the cost of filling the tank or unexpected maintenance expenses,” Octopus EV US Co-Lead Nathan Wyeth says in a news release. “With the ‘electric fuel’ for daily driving included, DriveFree is the complete package to make EVs work for Texas drivers looking to lower their driving costs without locking themselves in.”

DriveFree will include the lease of a top-quality pre-owned car with all maintenance covered. Part of this coverage includes unlimited home charging on Octopus Energy’s home energy plan.

According to Octopus Energy Group, Texas drivers will save an average of over $1,000 per year by switching from a gas car to an EV with potential to save even more depending on the previous gas vehicle make and model. Houstonians will be able to select an EV and DriveFree plan at OctopusEV.us, get approved online, and schedule delivery by an Octopus EV Specialist.

The program will cover all maintenance and tires through a mobile mechanic service to a customer’s home or office. Leasing plans range from one to four years with mileage plans up to 25,000 miles/year, and 4 brands to choose from.

In a report by SmartAsset, Texas was No. 41 of states with the most electric vehicle chargers. Last year, the city of Houston approved $281,000 funding for the expansion of free electric vehicle rideshare services in communities that are considered underserved by utilizing services like RYDE and Evolve Houston in December. DriveFree is now in the mix in helping Texas get more involved in the mix.

“With DriveFree, we wanted to address all the concerns people have about switching to electric vehicles,” Octopus EV US Co-Lead Chris George says in the news release. “For the millions of Houstonians commuting to work, driving electric can be a money saver today. For the first time, the more miles you drive, the more your savings will be!”

Octopus Electric Vehicles is part of the U.K.’s Octopus Energy Group, which first launched Octopus Energy US in Texas in 2020 after its acquisition of Evolve Energy.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston energy expert looks ahead to climate tech trends of 2026

Guest Column

There is no sugar‑coating it: 2025 was a rough year for many climate tech founders. Headlines focused on policy rollbacks and IRA uncertainty, while total climate tech venture and growth investment only inched up to about 40.5 billion dollars, an 8% rise that felt more like stabilization than the 2021–2022 boom. Deal count actually fell 18% and investor participation dropped 19%, with especially steep pullbacks in carbon and transportation, as capital concentrated in fewer, larger, “safer” bets. Growth-stage funding jumped 78% while early-stage seed rounds dropped 20%.

On top of that, tariff battles and shifting trade rules added real supply‑chain friction. In the first half of 2025, solar and wind were still 91% of new U.S. capacity additions, but interconnection delays, equipment uncertainty, and changing incentive structures meant many projects stalled or were repriced mid‑stream. Founders who had raised on 2021‑style valuations and policy optimism suddenly found themselves stuck in limbo, extending runway or shutting down.

The bright spots were teams positioned at the intersection of climate and the AI power surge. Power demand from data centers is now a primary driver of new climate‑aligned offtake, pulling capital toward firm, 24/7 resources. Geothermal developers like Fervo Energy, Sage Geosystems and XGS did well. Google’s enhanced‑geothermal deal in Nevada scales from a 3.5 MW pilot to about 115 MW under a clean transition tariff, nearly 30× growth in geothermal capacity enabled by a single corporate buyer. Meta and others are exploring similar pathways to secure round‑the‑clock low‑carbon power for hyperscale loads.

Beyond geothermal, nuclear is clearly back on the strategic menu. In 2024, Google announced the first U.S. corporate nuclear offtake, committing to purchase 500 MW from Kairos Power’s SMR fleet by 2035, a signal that big tech is willing to underwrite new firm‑power technologies when the decarbonization and reliability story is compelling. Meta just locked in 6.6GW of nuclear capacity through deals with Vistra, Oklo, and TerraPower.

Growth investors and corporates are increasingly clustering around platforms that can monetize long‑duration PPAs into data‑center demand rather than purely policy‑driven arbitrage.

Looking into 2026, the same trends will continue:

Solar and wind

Even with policy headwinds, solar and wind continue to dominate new capacity. In the first half of 2025 they made up about 90% of new U.S. electricity capacity. Over the 2025–2028 period, FERC’s ‘high‑probability’ pipeline points to on the order of 90–93 GW of new utility‑scale solar and roughly 20–23 GW of new wind, far outpacing other resources.

Storage and flexibility

Solar plus batteries is now the default build—solar and storage together account for about 81% of expected 2025 U.S. capacity additions, with storage deployments scaling alongside renewables to keep grids flexible. Thermal storage and other grid‑edge flexibility solutions are also attracting growing attention as ways to smooth volatile load.

EVs and transport

EV uptake continues to anchor long‑term battery demand; while transportation funding cooled in 2025, EV sales and charging build‑out are still major components of clean‑energy demand‑side investment

Buildings

Heat pumps, smart HVAC, and efficient water heating are now the dominant vectors for building‑sector decarbonization. Heating and cooling startups alone have raised billions since 2020, with nearly 700 million dollars going into HVAC‑focused companies in 2024, and that momentum carried into 2025.

Hydrogen

The green hydrogen narrative has faded, but analysts still see hydrogen as essential for steel, chemicals, and other hard‑to‑abate sectors, with large‑scale projects and offtake frameworks under development rather than headline hype.

CCS/CCUS

After years of skepticism, more large CCS projects are finally reaching FID and coming online, helped by a mix of tax credits and industrial demand, which makes CCS look more investable than it did in the pre‑IRA era.

So, yes, 2025 was a downer from the easy‑money, policy‑euphoria years. But the signal beneath the noise is clear: capital is rotating toward technologies with proven unit economics, real offtake (especially from AI‑driven power loads), and credible paths to scale—not away from climate altogether.

---

Nada Ahmed is the founding partner at Houston-based Energy Tech Nexus.

Houston startup advances methane tech, sets sights on growth capital

making milestones

Houston-based climatech startup Aquanta Vision achieved key milestones in 2025 for its enhanced methane-detection app and has its focus set on future funding.

Among the achievements was the completion of the National Science Foundation’s Advanced Sensing and Computation for Environmental Decision-making (ASCEND) Engine. The program, based in Colorado and Wyoming, awarded a total of $3 million in grants to support the commercialization of projects that tackle critical resilience challenges, such as water security, wildfire prediction and response, and methane emissions.

Aquanta Vision’s funding went toward commercializing its NETxTEN app, which automates leak detection to improve accuracy, speed and safety. The company estimates that methane leaks cost the U.S. energy industry billions of dollars each year, with 60 percent of leaks going undetected. Additionally, methane leaks account for around 10 percent of natural gas's contribution to climate change, according to MIT’s climate portal.

Throughout the months-long ASCEND program, Aquanta Vision moved from the final stages of testing into full commercial deployment of NETxTEN. The app can instantly identify leaks via its physics-based algorithms and raw video output of optical gas imaging cameras. It does not require companies to purchase new hardware, requires no human intervention and is universally compatible with all optical gas imaging (OGI) cameras. During over 12,000 test runs, 100 percent of leaks were detected by NETxTEN’s system, according to the company.

The app is geared toward end-users in the oil and gas industry who use OGI cameras to perform regular leak detection inspections and emissions monitoring. Aquanta Vision is in the process of acquiring new clients for the app and plans to scale commercialization between now and 2028, Babur Ozden, the company’s founder and CEO, tells Energy Capital.

“In the next 16 months, (our goal is to) gain a number of key customers as major accounts and OEM partners as distribution channels, establish benefits and stickiness of our product and generate growing, recurring revenues for ourselves and our partners,” he says.

The company also received an investment for an undisclosed amount from Marathon Petroleum Corp. late last year. The funding complemented follow-on investments from Ecosphere Ventures and Odyssey Energy Advisors.

Ozden says the funds will go toward the extension of its runway through the end of 2026. It will also help Aquanta Vision grow its team.

Ozden and Marcus Martinez, a product systems engineer, founded Aquanta Vision in 2023 and have been running it as a two-person operation. The company brought on four interns last year, but is looking to add more staff.

Ozden says the company also plans to raise a seed round in 2027 “to catapult us to a rapid growth phase in 2028-29.”

HETI discusses Houston’s energy leadership, from pathways to progress

The View From HETI

In 2024, RMI in collaboration with Mission Possible Partnership (MPP) and the Houston Energy Transition Initiative (HETI) mapped out ambitious scenarios for the region’s decarbonization journey. The report showed that with the right investments and technologies, Houston could achieve meaningful emissions reductions while continuing to power the world. That analysis painted a picture of what could be possible by 2030 and 2050.

Today, the latest HETI progress report shows Houston is not just planning anymore — the region is delivering.

Real results, right now

The numbers tell a compelling story. Since 2017, HETI’s member companies have invested more than $95 billion in low-carbon infrastructure, technologies, and R&D. That’s not a commitment for the future—that’s capital deployed, projects built, and operations transformed.

The results showed industry-wide reductions of 20% in total Scope 1 greenhouse gas emissions and a remarkable 55% decrease in methane emissions from global operations. These aren’t projections—they’re actual reductions happening across refineries, chemical plants, and production facilities throughout the Houston region.

How Houston is leading

What makes Houston’s approach work is its practical, technology-driven focus. Companies across the energy value chain are implementing solutions that work today:

  • Electrifying operations and integrating renewable power
  • Deploying advanced methane detection and elimination technologies
  • Upgrading equipment for greater efficiency
  • Capturing and storing carbon at commercial scale
  • Developing breakthrough technologies from geothermal to advanced nuclear

Take ExxonMobil’s Permian Basin electrification, Shell and Chevron’s lower-carbon Whale project, or BP’s massive Tangguh carbon capture project in Indonesia. These aren’t pilot programs—they’re multi-billion dollar investments demonstrating that decarbonization and energy production go hand in hand.

From scenarios to strategy

The RMI analysis identified three key pathways forward: enabling operational decarbonization, accelerating low-carbon technology scale-up, and creating carbon accounting mechanisms. Houston’s energy leaders have embraced all three.

The momentum is undeniable. Companies are setting ambitious 2030 and 2050 targets with clear roadmaps. New projects are reaching final investment decisions. Innovation ecosystems are flourishing. And critically, this progress is creating jobs and driving economic growth across the region.

Why this matters

Houston isn’t just managing the energy transition—it’s proving what’s possible when you combine world-class engineering expertise, integrated infrastructure, access to capital, and a commitment to both energy security and emissions reduction.

The dual challenge of delivering more energy with less emissions isn’t theoretical in Houston—it’s operational reality. Every ton of CO₂ reduced, every efficiency gain achieved, and every technology deployed demonstrates that we can meet growing global energy demand while making measurable progress on climate goals.

The path forward

The journey from last year’s scenarios to this year’s results shows something crucial: when industry, policymakers, and communities align around practical solutions, transformation accelerates.

Houston’s energy leadership isn’t about choosing between reliable energy and environmental progress, it’s about delivering both. And based on the progress we’re seeing, the momentum is only building.

———

Read the full analysis here. This article originally appeared on the Greater Houston Partnership's Houston Energy Transition Initiative blog. HETI exists to support Houston's future as an energy leader. For more information about the Houston Energy Transition Initiative, EnergyCapitalHTX's presenting sponsor, visit htxenergytransition.org.