Solar Slice Founder Nathan Childress says his new venture offers a fulfilling way to encourage and promote solar energy and a greener planet. Photo by Pixabay

A Houston nuclear engineer and entrepreneur wants consumers to capture their own ray of sunlight to brighten the prospect of making clean energy a bigger part of the power grid.

Solar Slice Founder Nathan Childress says his new venture offers a fulfilling way to encourage and promote solar energy and a greener planet. An experienced entrepreneur, Childress also serves as founder and CEO of technology software company Macorva.

Although trained in nuclear power plant design, solar power drew his interest as a cheaper and more accessible alternative, and Childress tells InnovationMap that he thinks that the transition to cleaner energy, in Texas especially, needs to step up.

With energy demand skyrocketing, and the push toward renewable solutions, solar seems like a safe bet for Childress, a former competitive high-stakes poker player. Childress cites a recent Yale University study that says 63 percent of Americans “feel a personal responsibility to help reduce global warming.”

But some studies show that 80 to 90 percent of the money invested into fighting climate change “aren’t going to things that people actually consider helpful,” he says.

“They’re more just projects that sound good, that are not actually taking any action,” says Childress, who has called Houston home for 25 years. He received his doctorate in medical physics at M.D. Anderson Cancer Center, where he worked on software that provided radiation therapy for patients.

The initial Kickstarter fundraising round, which will be launched soon, will finance the construction of one utility-scale solar farm, on about five to 10 acres, which would produce about 1 megawatt, or 1,000 kilowatts, of clean energy. The plant would make enough energy to power about 200 average homes.

Childress says interest has been strong, with several thousand signed up on the Kickstarter launch list. Some who are signed up expressed interest in a subscription, he said, and that may be offered later. Initially, though, for a one-time purchase of $95, a Solar Slice client can purchase one virtual 50W slice of solar power, produced by the farm. Over its lifetime, Childress says, that one purchase can offset three tons of carbon dioxide.

The app tracks carbon offsetting, and energy production for the slice, showing a client “exactly how much I have helped the climate, here’s exactly how (many) emissions I have prevented from putting in the atmosphere,” he says.

The energy produced by five slices can offset the average American’s carbon footprint for a year, and the power generated by the solar farm will be sold to the electric grid. As clients purchase more slices, they can earn eco-credits to donate to other climate-friendly partners, to plant trees or create pollinator habitats.

While Solar Slice is a for-profit venture, contributors won’t get rich or even make money from their purchase. Rather, it provides validation.

“Our focus is maximizing the real world impact, not for financial gain. This is not something people sign up (for) to make money. We’re really clear about that,” Childress says. “I want to show that it’s possible to have a for-profit company that is sustainable, that does good work.

“And hopefully, we can be part of the spirit…for a bigger movement, and for consumers and business, especially, to do things that matter.”

Solar Slice Founder Nathan Childress says his new venture offers a fulfilling way to encourage and promote solar energy and a greener planet. Photo courtesy

The largest U.S. solar plants are in Nevada and California, and those states are sites under consideration, but Childress says Texas is the most likely home for the initial project. The ten largest utility-scale solar plants in Texas by capacity are all in far west or central parts of the state, according to the state comptroller’s office.

Childress has a team of four, who are handling the marketing, plant design and site scouting, and hopes to hire five to 10 more, depending on response and growth. He says the Solar Slice consumer can directly connect in real time to the contribution that their purchase will make toward a green energy future.

“That was our inspiration..let’s start something that is really making a difference..and making really clear to the individuals what’s being done,” he says.

Solar energy has become a growing source of power for Texas, comprising about 6 percent of the state’s energy generation, as of 2022, the comptroller’s office says.

The state ranks first in projected growth of solar energy over the next five years, with more than 9,500 operating solar plants, and many thousands more announced, according to the state Public Utility Commission.

“We would absolutely love to make this into something where we are building plants around the nation, around the world,” Childress he says.

However, resistance to alternative energy projects like solar and wind, especially on a large scale, remains in some quarters.

Obtaining site permits for swaths of land can be also a challenge. For example, a recent survey by Berkeley Lab of 123 professionals from 62 unique, large-scale wind and solar energy facilities showed that about one-third of wind and solar siting applications in the past five years were canceled.

Half of the projects experienced delays of six months or longer. And according to the survey, developers expect the trend to continue, and become more expensive to address.

However, another Berkeley Lab survey of residents who live within three miles of a solar power plant showed that most view the plant positively. The larger the plant, the more negative the response in the survey. The smaller the farm, the more positive the reactions.

Childress says many of the common objections to utility-scale solar farms are misguided, and incorrect. For example, the concern that they would take over available farmland or take up too much space.

He says that even if the entire U.S. power grid relied solely on solar power, the plants would occupy not even a half percent of available land, which is about one percent farmland.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

10+ exciting energy breakthroughs made by Houston teams in 2025

Year In Review

Editor's note: As 2025 comes to a close, we're revisiting the biggest headlines and major milestones of the energy sector this year. Here are the most exciting scientific breakthroughs made by Houstonians this year that are poised to shape the future of energy:

Rice University team develops eco-friendly method to destroy 'forever chemicals' in water

Rice University researchers have developed a new method for removing PFAS from water that works 100 times faster than traditional filters. Photo via Rice University.

Rice University researchers have teamed up with South Korean scientists to develop the first eco-friendly technology that captures and destroys toxic “forever chemicals,” or PFAS, in water. The Rice-led study centered on a layered double hydroxide (LDH) material made from copper and aluminum that could rapidly capture PFAS and be used to destroy the chemicals.

UH researchers make breakthrough in cutting carbon capture costs

UH carbon capture cost cutting

A team from UH has published two breakthrough studies that could help cut costs and boost efficiency in carbon capture. Photo courtesy UH.

A team of researchers at the University of Houston has made two breakthroughs in addressing climate change and potentially reducing the cost of capturing harmful emissions from power plants. Led by Professor Mim Rahimi at UH’s Cullen College of Engineering, the team first introduced a membraneless electrochemical process that cuts energy requirements and costs for amine-based carbon dioxide capture during the acid gas sweetening process.The second breakthrough displayed a reversible flow battery architecture that absorbs CO2 during charging and releases it upon discharge.

Houston team’s discovery brings solid-state batteries closer to EV use

Houston researchers have uncovered why solid-state batteries break down and what could be done to slow the process. Photo via Getty Images.

A team of researchers from the University of Houston, Rice University and Brown University has uncovered new findings that could extend battery life and potentially change the electric vehicle landscape. Their work deployed a powerful, high-resolution imaging technique known as operando scanning electron microscopy to better understand why solid-state batteries break down and what could be done to slow the process.

Houston researchers make breakthrough on electricity-generating bacteria

A team of Rice researchers, including Caroline Ajo-Franklin and Biki Bapi Kundu, has uncovered how certain bacteria breathe by generating electricity. Photo by Jeff Fitlow/Rice University.

Research from Rice University that merges biology with electrochemistry has uncovered new findings on how some bacteria generate electricity. Research showed how some bacteria use compounds called naphthoquinones, rather than oxygen, to transfer electrons to external surfaces in a process known as extracellular respiration. In other words, the bacteria are exhale electricity as they breathe. This process has been observed by scientists for years, but the Rice team's deeper understanding of its mechanism is a major breakthrough, with implications for the clean energy and industrial biotechnology sectors, according to the university.

Rice researchers' quantum breakthrough could pave the way for next-gen superconductors

Researchers from Rice University say their recent findings could revolutionize power grids, making energy transmission more efficient. Image via Getty Images.

A study from researchers at Rice University could lead to future advances in superconductors with the potential to transform energy use. The study revealed that electrons in strange metals, which exhibit unusual resistance to electricity and behave strangely at low temperatures, become more entangled at a specific tipping point, shedding new light on these materials. The materials share a close connection with high-temperature superconductors, which have the potential to transmit electricity without energy loss, according to the researchers. By unblocking their properties, researchers believe this could revolutionize power grids and make energy transmission more efficient.

UH researchers develop breakthrough material to boost efficiency of sodium-ion batteries

A team at the University of Houston is changing the game for sodium-ion batteries. Photo via Getty Images

A research lab at the University of Houston developed a new type of material for sodium-ion batteries that could make them more efficient and boost their energy performance. The Canepa Research Laboratory is working on a new material called sodium vanadium phosphate, which improves sodium-ion battery performance by increasing the energy density. This material brings sodium technology closer to competing with lithium-ion batteries, according to the researchers.

Houston researchers make headway on developing low-cost sodium-ion batteries

Houston researchers make headway on developing low-cost sodium-ion batteries

Rice's Atin Pramanik and a team in Pulickel Ajayan's lab shared new findings that offer a sustainable alternative to lithium batteries by enhancing sodium and potassium ion storage. Photo by Jeff Fitlow/Courtesy Rice University

A new study by researchers from Rice University’s Department of Materials Science and NanoEngineering, Baylor University and the Indian Institute of Science Education and Research Thiruvananthapuram has introduced a solution that could help develop more affordable and sustainable sodium-ion batteries. The team worked with tiny cone- and disc-shaped carbon materials from oil and gas industry byproducts with a pure graphitic structure. The forms allow for more efficient energy storage with larger sodium and potassium ions, which is a challenge for anodes in battery research. Sodium and potassium are more widely available and cheaper than lithium.

Houston scientists develop 'recharge-to-recycle' reactor for lithium-ion batteries

Rice University scientists' “recharge-to-recycle” reactor has major implications for the electric vehicle sector. Photo courtesy Jorge Vidal/Rice University.

Engineers at Rice University have developed a cleaner, innovative process to turn end-of-life lithium-ion battery waste into new lithium feedstock. The findings demonstrate how the team’s new “recharge-to-recycle” reactor recharges the battery’s waste cathode materials to coax out lithium ions into water. The team was then able to form high-purity lithium hydroxide, which was clean enough to feed directly back into battery manufacturing. The study has major implications for the electric vehicle sector, which significantly contributes to the waste stream from end-of-life battery packs.

Houston researchers develop strong biomaterial that could replace plastic

A team led by M.A.S.R. Saadi and Muhammad Maksud Rahman has developed a biomaterial that they hope could be used for the “next disposable water bottle." Photo courtesy Rice University.

Collaborators from two Houston universities are leading the way in engineering a biomaterial into a scalable, multifunctional material that could potentially replace plastic. The study introduced a biosynthesis technique that aligns bacterial cellulose fibers in real-time, which resulted in robust biopolymer sheets with “exceptional mechanical properties.” Ultimately, the scientists hope this discovery could be used for the “next disposable water bottle,” which would be made by biodegradable biopolymers in bacterial cellulose, an abundant resource on Earth. Additionally, the team sees applications for the materials in the packaging, breathable textiles, electronics, food and energy sectors.

Houston researchers reach 'surprising' revelation in materials recycling efforts

A team led by Matteo Pasquali, director of Rice’s Carbon Hub, has unveiled how carbon nanotube fibers can be a sustainable alternative to materials like steel, copper and aluminum. Photo by Jeff Fitlow/ Courtesy Rice University

Researchers at Rice University have demonstrated how carbon nanotube (CNT) fibers can be fully recycled without any loss in their structure or properties. The discovery shows that CNT fibers could be used as a sustainable alternative to traditional materials like metals, polymers and the larger, harder-to-recycle carbon fibers, which the team hopes can pave the way for more sustainable and efficient recycling efforts.

UH lands $1M NSF grant to train future critical minerals workforce

workforce pipeline

The University of Houston has launched a $1 million initiative funded by the National Science Foundation to address the gap in the U.S. mineral industry and bring young experts to the field.

The program will bring UH and key industry partners together to expand workforce development and drive research that fuels innovation. It will be led by Xuqing "Jason" Wu, an associate professor of information science technology.

“The program aims to reshape public perception of the critical minerals industry, highlighting its role in energy, defense and advanced manufacturing,” Wu said in a news release. “Our program aims to showcase the industry’s true, high-tech nature.”

The project will sponsor 10 high school students and 10 community college students in Houston each year. It will include industry mentors and participation in a four-week training camp that features “immersive field-based learning experiences.”

“High school and community college students often lack exposure to career pathways in mining, geoscience, materials science and data science,” Wu added in the release. “This project is meant to ignite student interest and strengthen the U.S. workforce pipeline in the minerals industry by equipping students with technical skills, industry knowledge and career readiness.”

This interdisciplinary initiative will also work with co-principal investigators across fields at UH:

  • Jiajia Sun, Earth & Atmospheric Sciences
  • Yan Yao and Jiefu Chen, Electrical and Computer Engineering
  • Yueqin Huang, Information Science Technology

According to UH, minerals and rare earth elements have become “essential building blocks of modern life” and are integral components in technology and devices, roads, the energy industry and more.

Houston microgrid company names new CEO

new hire

Houston-based electric microgrid company Enchanted Rock has named a new CEO.

John Carrington has assumed the role after serving as Enchanted Rock's executive chairman since June, the company announced earlier this month.

Carrington most recently was CEO of Houston-based Stem, which offers AI-enabled software and services designed for setting up and operating clean energy facilities. He stepped down as Stem’s CEO in September 2024. Stem, which was founded in 2006 and went public under Carrington's leadership in 2021, was previously based in San Francisco.

Carrington has also held senior leadership roles at Miasolé, First Solar and GE.

Corey Amthor has served as acting CEO of Enchanted Rock since June. He succeeded Enchanted Rock founder Thomas McAndrew in the role, with McAndrew staying on with the company as a strategic advisor and board member. With the hiring of Carrington, Amthor has returned to his role as president. According to the company, Amthor and Carrington will "partner to drive the company’s next phase of growth."

“I’m proud to join a leadership team known for technical excellence and execution, and with our company-wide commitment to innovation, we are well positioned to navigate this moment of unprecedented demand and advance our mission alongside our customers nationwide,” Carrington said in the news release. “Enchanted Rock’s technology platform delivers resilient, clean and scalable ultra-low-emissions onsite power that solves some of the most urgent challenges facing our country today. I’m energized by the strong momentum and growing market demand for our solutions, and we remain committed to providing data centers and other critical sectors with the reliable power essential to their operations.”

This summer, Enchanted Rock also announced that Ian Blakely would reassume the role of CFO at the company. He previously served as chief strategy officer. Paul Froutan, Enchanted Rock's former CTO, was also named COO last year.