Now that it's less merry and bright, do the right thing and recycle your tree with the city of Houston. Photo by Daeun Kim on Unsplash

As the holiday season comes to a close, you might be wondering what's the most sustainable way to say goodbye to your beloved Christmas tree. A city program has your solution.

The city of Houston's Solid Waste Management Department has opened 22 residential tree drop-off recycling locations throughout the area. Locals can take their live trees to one of these centers across the city, where they will be repurposed for mulch or other landscape materials.

This tree recycling program, which runs Thursday, December 26, 2024, through Friday, January 24, 2025, is part of the city of Houston for the 34rd annual tree mulching event.

Before depositing the tree or trees, be sure to remove all lights, wire, tinsel, ornaments, nails, stands, and other non-organic decorative materials. Importantly, artificial, flocked, or painted trees will not be accepted.

Below is a list of Christmas tree recycling locations, according to the city:

Open Tuesday to Sunday, 9 am to 6 pm (closed on Wednesday, January 1)

Open daily, 9 am to 6 pm

Open Monday to Saturday, 8 am to 5 pm (closed Wednesday, January 1)

Open Monday to Friday, 7 am to 5 pm, and Saturday 7 am to noon (closed Wednesday, January 1, and Monday, January 20)

  • Living Earth - 5802 Crawford Rd.
  • Living Earth - 1503 Industrial Dr, Missouri City
  • Living Earth - 1700 Highway 90A East, Richmond
  • Living Earth - 12200 Cutten Road
  • Living Earth - 16138 Highway 6, Iowa Colony
  • Living Earth - 5210 S. Sam Houston Pkwy E
  • Living Earth - 10310 Beaumont Highway
  • Living Earth - 17555 I-45 South, Conroe TX
  • Living Earth -20611 US Hwy 59, New Caney TX
  • Living Earth – 9306 FM 523, Freeport TX
Now that it's less merry and bright, do the right thing and recycle your tree with the city of Houston. Photo by Mourad Saadi on Unsplash

City of Houston provides 24 recycle stations for Christmas tree drop off

calling all evergreens

The holidays have come and gone, and the city of Houston is asking for you to recycle your Christmas trees.

But what to do with that live tree after the holidays celebrations are over? Tradition dictates that revelers can leave their yuletide tree up though January 6, 2023. But afterwards, dumping it with the front-yard trash is unceremonious and disrespectful. Better to recycle holiday tree — especially at one of the city's tree recycling centers that are now open.

The city of Houston's Solid Waste Management Department has opened 24 residential tree drop-off recycling locations throughout the area. Locals can take their live trees to one of these centers across the city, where they will be repurposed for mulch or other landscape materials.

This tree recycling program is part of the city of Houston for the 33rd annual tree mulching event.

Before depositing the tree or trees, be sure to remove all lights, wire, tinsel, ornaments, nails, stands, and other non-organic decorative materials. Importantly, artificial, flocked, or painted trees will not be accepted. Residents have until January 26, 2024 to donate holiday trees.

Below is a list of Christmas tree recycling locations, per ABC13 and the city of Houston.

Open daily 9 am to 6 pm

  • Memorial Park at the Softball Parking Lot: 6402 Arnot St.
  • T.C. Jester Park: 4200 T.C. Jester West
  • Ellington Airport Recycling: Hwy 3 & Brantley Road
  • Kingwood (Branch Library): Bens View Lane at Bens Branch Drive
  • Doss Park (gates close at 5 pm): 2500 Frick Rd.

Open Tuesday to Sunday from 9 am to 6 pm

  • Central Neighborhood Depository: 2240 Central St.
  • Kirkpatrick Neighborhood Depository: 5565 Kirkpatrick
  • Sommermeyer Neighborhood Depository: 14400 Sommermeyer
  • N. Main Neighborhood Depository: 9003 North Main
  • Southwest Neighborhood Depository: 10785 Southwest Freeway
  • Sunbeam Neighborhood Depository: 5100 Sunbeam

Open Monday - Saturday, 8 am to 5 pm; closed Monday, Jan. 15, 2024

  • Westpark Consumer Recycling Center: 5900 Westpark

Open Monday to Friday 7 am to 5 pm and Saturday 7 am to noon; closed Monday, January 1, 2024

  • Living Earth: 5802 Crawford Rd.
  • Living Earth: 1503 Industrial Drive, Missouri City
  • Living Earth: 1700 E Highway 90Alt, Richmond
  • Living Earth: 12202 Cutten Rd.
  • Living Earth: 16138 Highway 6, Iowa Colony
  • Living Earth: 5210 S. Sam Houston Parkway E.
  • Living Earth: 27733 Katy Freeway, Katy
  • Living Earth: 10310 Beaumont Highway
  • Living Earth: 17555 I-45 South, Conroe
  • Living Earth: 20611 U.S. 59, New Caney
  • Living Earth: 9306 FM 523 Freeport

———

This article originally ran on CultureMap.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Tackling methane in the energy transition: Takeaways from Global Methane Hub and HETI

The view from heti

Leaders from across the energy value chain gathered in Houston for a roundtable hosted by the Global Methane Hub (GMH) and the Houston Energy Transition Initiative (HETI). The session underscored the continued progress to reduce methane emissions as the energy industry addresses the dual challenge of producing more energy that the world demands while simultaneously reducing emissions.

The Industry’s Shared Commitment and Challenge

There’s broad recognition across the industry that methane emissions must be tackled with urgency, especially as natural gas demand is projected to grow 3050% by 2050. This growth makes reducing methane leakage more than a sustainability issue—it’s also a matter of global market access and investor confidence.

Solving this issue, however, requires overcoming technical challenges that span infrastructure, data acquisition, measurement precision, and regulatory alignment.

Getting the Data Right: Top-Down vs. Bottom-Up

Accurate methane leak monitoring and quantification is the cornerstone of any effective mitigation strategy. A key point of discussion was the differentiation between top-down and bottom-up measurement approaches.

Top-down methods such as satellite and aerial monitoring offer broad-area coverage and can identify large emission plumes. Technologies such as satellite-based remote sensing (e.g., using high-resolution imagery) or airborne methane surveys (using aircraft equipped with tunable diode laser absorption spectroscopy) are commonly used for wide-area detection. While these methods are efficient for identifying large-scale emission hotspots, their accuracy is lower when it comes to quantifying emissions at the source, detecting smaller, diffuse leaks, and providing continuous monitoring.

In contrast, bottom-up methods focus on direct, on-site detection at the equipment level, providing more granular and precise measurements. Technologies used here include optical gas imaging (OGI) cameras, flame ionization detectors (FID), and infrared sensors, which can directly detect methane at the point of release. These methods are more accurate but can be resource and infrastructure intensive, requiring frequent manual inspections or continuous monitoring installations, which can be costly and technically challenging in certain environments.

The challenge lies in combining both methods: top-down for large-scale monitoring and bottom-up for detailed, accurate measurements. No single technology is perfect or all-inclusive. An integrated approach that uses both datasets will help to create a more comprehensive picture of emissions and improve mitigation efforts.

From Detection to Action: Bridging the Gap

Data collection is just the first step—effective action follows. Operators are increasingly focused on real-time detection and mitigation. However, operational realities present obstacles. For example, real-time leak detection and repair (LDAR) systems—particularly for continuous monitoring—face challenges due to infrastructure limitations. Remote locations like the Permian Basin may lack the stable power sources needed to run continuous monitoring equipment to individual assets.

Policy, Incentives, and Regulatory Alignment

Another critical aspect of the conversation was the need for policy incentives that both promote best practices and accommodate operational constraints. Methane fees, introduced to penalize emissions, have faced widespread resistance due to their design flaws that in many cases actually disincentivize methane emissions reductions. Industry stakeholders are advocating for better alignment between policy frameworks and operational capabilities.

In the United States, the Subpart W rule, for example, mandates methane reporting for certain facilities, but its implementation has raised concerns about the accuracy of some of the new reporting requirements. Many in the industry continue to work with the EPA to update these regulations to ensure implementation meets desired legislative expectations.

The EU’s demand for quantified methane emissions for imported natural gas is another driving force, prompting a shift toward more detailed emissions accounting and better data transparency. Technologies that provide continuous, real-time monitoring and automated reporting will be crucial in meeting these international standards.

Looking Ahead: Innovation and Collaboration

The roundtable highlighted the critical importance of advancing methane detection and mitigation technologies and integrating them into broader emissions reduction strategies. The United States’ 45V tax policy—focused on incentivizing production of low-carbon intensity hydrogen often via reforming of natural gas—illustrates the growing momentum towards science-based accounting and transparent data management. To qualify for 45V incentives, operators can differentiate their lower emissions intensity natural gas by providing foreground data to the EPA that is precise and auditable, essential for the industry to meet both environmental and regulatory expectations. Ultimately, the success of methane reduction strategies depends on collaboration between the energy industry, technology providers, and regulators.

The roundtable underscored that while significant progress has been made in addressing methane emissions, technical, regulatory, and operational challenges remain. Collaboration across industry, government, and technology providers is essential to overcoming these barriers. With better data, regulatory alignment, and investments in new technologies, the energy sector can continue to reduce methane emissions while supporting global energy demands.

———

HETI thanks Chris Duffy, Baytown Blue Hydrogen Venture Executive, ExxonMobil; Cody Johnson, CEO, SCS Technologies; and Nishadi Davis, Head of Carbon Advisory Americas, wood plc, for their participation in this event.

This article originally appeared on the Greater Houston Partnership's Houston Energy Transition Initiative blog. HETI exists to support Houston's future as an energy leader. For more information about the Houston Energy Transition Initiative, EnergyCapitalHTX's presenting sponsor, visit htxenergytransition.org.

Houston battery recycling company signs 15-year deal to supply Texas flagship facility

green team

Houston- and Singapore-headquartered Ace Green Recycling, a provider of sustainable battery recycling technology solutions, has secured a 15-year battery material supply agreement with Miami-based OM Commodities.

The global commodities trading firm will supply Ace with at least 30,000 metric tons of lead scrap annually, which the company expects to recycle at its planned flagship facility in Texas. Production is expected to commence in 2026.

"We believe that Ace's future Texas facility is poised to play a key role in addressing many of the current challenges in the lead industry in the U.S., while helping the country meet the growing domestic demand for valuable battery materials," Nishchay Chadha, CEO and co-founder of Ace, said in a news release. "This agreement with OM Commodities will provide us with enough supply to support our Texas facility during all of its current planned phases, enabling us to achieve optimal efficiencies as we deploy our solutions in the U.S. market. With OM Commodities being a U.S.-based leader in metals doing business across the Americas and Asia with a specialty in lead batteries, we look forward to leveraging their expertise in the space as we advance our scale-up efforts."

The feedstock will be sufficient to cover 100 percent of Ace's phase one recycling capacity at the Texas facility, according to the statement. The companies are also discussing future lithium battery recycling collaborations.

"Ace is a true pioneer when it comes to providing an environmentally friendly and economically superior solution to recycle valuable material from lead scrap," Yiannis Dumas, president of OM Commodities, added in the news release. "We look forward to supporting Ace with lead feedstock as they scale up their operations in Texas and helping create a more circular and sustainable battery materials supply chain in the U.S."

Additionally, ACE shared that it is expected to close a merger with Athena Technology Acquisition Corp. II (NYSE: ATEK) in the second half of 2025, after which Ace will become a publicly traded company on the Nasdaq Stock Market under the ticker symbol "AGXI."

"As we continue to scale our lead and lithium battery recycling technologies to help support the markets for both internal combustion engines and electric vehicles, we expect that our upcoming listing will be a key accelerator of growth for Ace,” Chada said.

China-based company to launch its largest U.S. energy storage project in Houston

coming soon

Trina Storage and FlexGen, a North Carolina-based company that develops integrated energy storage systems, are bringing a 371-megawatt battery energy storage system to Houston. The project will be the largest grid-scale deployment project in North America by Trina Storage, which is a business unit of China-based Trina Solar.

"This project is a testament to Trina Storage's ability to provide a fully bankable, integrated energy storage solution that meets the evolving needs of the market," Terry Chen, vice president of Trina Storage North America, said in a news release. "As our first grid-scale deployment in North America, this achievement reflects the industry's confidence in our technology and our commitment to de-risking energy storage investments and supporting the energy transition in the region."

The project, developed by Boulder, Colorado-based SMT Energy, will utilize Trina Storage's advanced Elementa 2 battery storage system, which is designed to optimize energy performance and reliability. The system uses Trinas proprietary lithium iron phosphate cells that are more than 95 percent energy efficient, according to the company.

FlexGen will provide system integration and use its HybridOS energy management software. The HybridOS allows site operators to manage systems, detect issues faster and predict maintenance needs.

"This collaboration with Trina Storage and SMT Energy represents another major step in accelerating the deployment of flexible energy storage assets to meet growing demand," Diane Giacomozzi, COO at FlexGen, added in the release. "By pre-integrating FlexGen HybridOS with Trina's Elementa 2 energy storage solution in our Durham Innovation Lab, we're enabling faster project delivery and optimized performance from the first moment of operation."

Trina Storage currently has 10 energy storage facilities in China and two in the UK. The Houston facility is part of its plans to expand across the U.S., according to a LinkedIn post form the company.