Now that it's less merry and bright, do the right thing and recycle your tree with the city of Houston. Photo by Daeun Kim on Unsplash

As the holiday season comes to a close, you might be wondering what's the most sustainable way to say goodbye to your beloved Christmas tree. A city program has your solution.

The city of Houston's Solid Waste Management Department has opened 22 residential tree drop-off recycling locations throughout the area. Locals can take their live trees to one of these centers across the city, where they will be repurposed for mulch or other landscape materials.

This tree recycling program, which runs Thursday, December 26, 2024, through Friday, January 24, 2025, is part of the city of Houston for the 34rd annual tree mulching event.

Before depositing the tree or trees, be sure to remove all lights, wire, tinsel, ornaments, nails, stands, and other non-organic decorative materials. Importantly, artificial, flocked, or painted trees will not be accepted.

Below is a list of Christmas tree recycling locations, according to the city:

Open Tuesday to Sunday, 9 am to 6 pm (closed on Wednesday, January 1)

Open daily, 9 am to 6 pm

Open Monday to Saturday, 8 am to 5 pm (closed Wednesday, January 1)

Open Monday to Friday, 7 am to 5 pm, and Saturday 7 am to noon (closed Wednesday, January 1, and Monday, January 20)

  • Living Earth - 5802 Crawford Rd.
  • Living Earth - 1503 Industrial Dr, Missouri City
  • Living Earth - 1700 Highway 90A East, Richmond
  • Living Earth - 12200 Cutten Road
  • Living Earth - 16138 Highway 6, Iowa Colony
  • Living Earth - 5210 S. Sam Houston Pkwy E
  • Living Earth - 10310 Beaumont Highway
  • Living Earth - 17555 I-45 South, Conroe TX
  • Living Earth -20611 US Hwy 59, New Caney TX
  • Living Earth – 9306 FM 523, Freeport TX
Now that it's less merry and bright, do the right thing and recycle your tree with the city of Houston. Photo by Mourad Saadi on Unsplash

City of Houston provides 24 recycle stations for Christmas tree drop off

calling all evergreens

The holidays have come and gone, and the city of Houston is asking for you to recycle your Christmas trees.

But what to do with that live tree after the holidays celebrations are over? Tradition dictates that revelers can leave their yuletide tree up though January 6, 2023. But afterwards, dumping it with the front-yard trash is unceremonious and disrespectful. Better to recycle holiday tree — especially at one of the city's tree recycling centers that are now open.

The city of Houston's Solid Waste Management Department has opened 24 residential tree drop-off recycling locations throughout the area. Locals can take their live trees to one of these centers across the city, where they will be repurposed for mulch or other landscape materials.

This tree recycling program is part of the city of Houston for the 33rd annual tree mulching event.

Before depositing the tree or trees, be sure to remove all lights, wire, tinsel, ornaments, nails, stands, and other non-organic decorative materials. Importantly, artificial, flocked, or painted trees will not be accepted. Residents have until January 26, 2024 to donate holiday trees.

Below is a list of Christmas tree recycling locations, per ABC13 and the city of Houston.

Open daily 9 am to 6 pm

  • Memorial Park at the Softball Parking Lot: 6402 Arnot St.
  • T.C. Jester Park: 4200 T.C. Jester West
  • Ellington Airport Recycling: Hwy 3 & Brantley Road
  • Kingwood (Branch Library): Bens View Lane at Bens Branch Drive
  • Doss Park (gates close at 5 pm): 2500 Frick Rd.

Open Tuesday to Sunday from 9 am to 6 pm

  • Central Neighborhood Depository: 2240 Central St.
  • Kirkpatrick Neighborhood Depository: 5565 Kirkpatrick
  • Sommermeyer Neighborhood Depository: 14400 Sommermeyer
  • N. Main Neighborhood Depository: 9003 North Main
  • Southwest Neighborhood Depository: 10785 Southwest Freeway
  • Sunbeam Neighborhood Depository: 5100 Sunbeam

Open Monday - Saturday, 8 am to 5 pm; closed Monday, Jan. 15, 2024

  • Westpark Consumer Recycling Center: 5900 Westpark

Open Monday to Friday 7 am to 5 pm and Saturday 7 am to noon; closed Monday, January 1, 2024

     
  • Living Earth: 5802 Crawford Rd.
  • Living Earth: 1503 Industrial Drive, Missouri City
  • Living Earth: 1700 E Highway 90Alt, Richmond
  • Living Earth: 12202 Cutten Rd.
  • Living Earth: 16138 Highway 6, Iowa Colony
  • Living Earth: 5210 S. Sam Houston Parkway E.
  • Living Earth: 27733 Katy Freeway, Katy
  • Living Earth: 10310 Beaumont Highway
  • Living Earth: 17555 I-45 South, Conroe
  • Living Earth: 20611 U.S. 59, New Caney
  • Living Earth: 9306 FM 523 Freeport

———

This article originally ran on CultureMap.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

DOE report warns of widespread power blackouts by 2030 amid grid challenges

grid report

Scheduled retirements of traditional power plants, dependence on energy sources like wind and solar, and the growth of energy-gobbling data centers put the U.S. — including Texas — at much greater risk of massive power outages just five years from now, a new U.S. Department of Energy report suggests.

The report says the U.S. power grid won’t be able to sustain the combined impact of plant closures, heavy reliance on renewable energy, and the boom in data center construction. As a result, the risk of power blackouts will be 100 times greater in 2030, according to the report.

“The status quo of more [plant] retirements and less dependable replacement generation is neither consistent with winning the AI race and ensuring affordable energy for all Americans, nor with continued grid reliability … . Absent intervention, it is impossible for the nation’s bulk power system to meet the AI growth requirements while maintaining a reliable power grid and keeping energy costs low for our citizens,” the report says.

Avoiding planned shutdowns of traditional energy plants, such as those fueled by coal and oil, would improve grid reliability, but a shortfall would still persist in the territory served by the Electric Reliability Council of Texas (ERCOT), particularly during the winter, the report says. ERCOT operates the power grid for the bulk of Texas.

According to the report, 104 gigawatts of U.S. power capacity from traditional plants is set to be phased out by 2030. “This capacity is not being replaced on a one-to-one basis,” says the report, “and losing this generation could lead to significant outages when weather conditions do not accommodate wind and solar generation.”

To meet reliability targets, ERCOT would need 10,500 megawatts of additional “perfect” capacity by 2030, the report says. Perfect capacity refers to maximum power output under ideal conditions.

“ERCOT continues to undergo rapid change, and supply additions will have a difficult time keeping up with demand growth,” Brent Nelson, managing director of markets and strategy at Ascend Analytics, a provider of data and analytics for the energy sector, said in a release earlier this summer. “With scarcity conditions ongoing and weather-dependent, expect a volatile market with boom years and bust years.”

Syzygy partners with fellow Houston co. on sustainable aviation fuel facility

SAF production

Houston-based Syzygy Plasmonics has announced a partnership with Velocys, another Houston company, on its first-of-its-kind sustainable aviation fuel (SAF) production project in Uruguay.

Velocys was selected to provide Fischer-Tropsch technology for the project. Fischer-Tropsch technology converts synthesis gas into liquid hydrocarbons, which is key for producing synthetic fuels like SAF.

Syzygy estimates that the project, known as NovaSAF 1, will produce over 350,000 gallons of SAF annually. It is backed by Uruguay’s largest dairy and agri-energy operations, Estancias del Lago, with permitting and equipment sourcing ongoing. Syzygy hopes to start operations by 2027.

"This project proves that profitable SAF production doesn't have to wait on future infrastructure," Trevor Best, CEO of Syzygy Plasmonics, said in a news release. "With Velocys, we're bringing in a complete, modular solution that drives down overall production costs and is ready to scale. Uruguay is only the start."

The NovaSAF 1 facility will convert dairy waste and biogas into drop-in jet fuel using renewable electricity and waste gas via its light-driven GHG e-Reforming technology. The facility is expected to produce SAF with at least an 80 percent reduction in carbon intensity compared to Jet A fuel.

Syzygy will use Velocys’ microFTL technology to convert syngas into high-yield jet fuel. Velocys’ microFTL will help maximize fuel output, which will assist in driving down the cost required to produce synthetic fuel.

"We're proud to bring our FT technology into a project that's changing the game," Matthew Viergutz, CEO of Velocys, added in the release. "This is what innovation looks like—fast, flexible, and focused on making SAF production affordable."

How carbon capture works and the debate about whether it's a future climate solution

Energy Transition

Power plants and industrial facilities that emit carbon dioxide, the primary driver of global warming, are hopeful that Congress will keep tax credits for capturing the gas and storing it deep underground.

The process, called carbon capture and sequestration, is seen by many as an important way to reduce pollution during a transition to renewable energy.

But it faces criticism from some conservatives, who say it is expensive and unnecessary, and from environmentalists, who say it has consistently failed to capture as much pollution as promised and is simply a way for producers of fossil fuels like oil, gas and coal to continue their use.

Here's a closer look.

How does the process work?

Carbon dioxide is a gas produced by burning of fossil fuels. It traps heat close to the ground when released to the atmosphere, where it persists for hundreds of years and raises global temperatures.

Industries and power plants can install equipment to separate carbon dioxide from other gases before it leaves the smokestack. The carbon then is compressed and shipped — usually through a pipeline — to a location where it’s injected deep underground for long-term storage.

Carbon also can be captured directly from the atmosphere using giant vacuums. Once captured, it is dissolved by chemicals or trapped by solid material.

Lauren Read, a senior vice president at BKV Corp., which built a carbon capture facility in Texas, said the company injects carbon at high pressure, forcing it almost two miles below the surface and into geological formations that can hold it for thousands of years.

The carbon can be stored in deep saline or basalt formations and unmineable coal seams. But about three-fourths of captured carbon dioxide is pumped back into oil fields to build up pressure that helps extract harder-to-reach reserves — meaning it's not stored permanently, according to the International Energy Agency and the U.S. Environmental Protection Agency.

How much carbon dioxide is captured?

The most commonly used technology allows facilities to capture and store around 60% of their carbon dioxide emissions during the production process. Anything above that rate is much more difficult and expensive, according to the IEA.

Some companies have forecast carbon capture rates of 90% or more, “in practice, that has never happened,” said Alexandra Shaykevich, research manager at the Environmental Integrity Project’s Oil & Gas Watch.

That's because it's difficult to capture carbon dioxide from every point where it's emitted, said Grant Hauber, a strategic adviser on energy and financial markets at the Institute for Energy Economics and Financial Analysis.

Environmentalists also cite potential problems keeping it in the ground. For example, last year, agribusiness company Archer-Daniels-Midland discovered a leak about a mile underground at its Illinois carbon capture and storage site, prompting the state legislature this year to ban carbon sequestration above or below the Mahomet Aquifer, an important source of drinking water for about a million people.

Carbon capture can be used to help reduce emissions from hard-to-abate industries like cement and steel, but many environmentalists contend it's less helpful when it extends the use of coal, oil and gas.

A 2021 study also found the carbon capture process emits significant amounts of methane, a potent greenhouse gas that’s shorter-lived than carbon dioxide but traps over 80 times more heat. That happens through leaks when the gas is brought to the surface and transported to plants.

About 45 carbon-capture facilities operated on a commercial scale last year, capturing a combined 50 million metric tons of carbon dioxide — a tiny fraction of the 37.8 gigatonnes of carbon dioxide emissions from the energy sector alone, according to the IEA.

It's an even smaller share of all greenhouse gas emissions, which amounted to 53 gigatonnes for 2023, according to the latest report from the European Commission’s Emissions Database for Global Atmospheric Research.

The Institute for Energy Economics and Financial Analysis says one of the world's largest carbon capture utilization and storage projects, ExxonMobil’s Shute Creek facility in Wyoming, captures only about half its carbon dioxide, and most of that is sold to oil and gas companies to pump back into oil fields.

Future of US tax credits is unclear

Even so, carbon capture is an important tool to reduce carbon dioxide emissions, particularly in heavy industries, said Sangeet Nepal, a technology specialist at the Carbon Capture Coalition.

“It’s not a substitution for renewables ... it’s just a complementary technology,” Nepal said. “It’s one piece of a puzzle in this broad fight against the climate change.”

Experts say many projects, including proposed ammonia and hydrogen plants on the U.S. Gulf Coast, likely won't be built without the tax credits, which Carbon Capture Coalition Executive Director Jessie Stolark says already have driven significant investment and are crucial U.S. global competitiveness.