By taking a thoughtful approach to employees’ individual situations, fleet managers can design a take-home EV program that fits their drivers’ needs and benefits the company’s bottom line in the long run. Photo via Getty Images

As electric vehicles continue to rise in popularity among corporate fleets, the question of how to best accommodate charging needs for fleet drivers, especially those taking their vehicles home, is becoming increasingly important.

Charging EV fleet vehicles at home can be an excellent strategy to save employees time and cut operational costs. However, many companies hesitate in their take-home EV implementation, mistakenly believing that high-cost level 2 home chargers are a necessity. This misconception can stall the transition to an efficient, cost-effective fleet charging solution.

By taking a thoughtful approach to employees’ individual situations, fleet managers can design a take-home EV program that fits their drivers’ needs and benefits the company’s bottom line in the long run. Here are some essential points to consider:

The viability of level 1 charging for low-mileage drivers

For many fleet drivers, especially those covering less than 10,000 miles annually, the standard level 1 charger that plugs into a 120v (standard) wall outlet and comes with their EV is perfectly adequate. This solution involves no additional hardware costs, mitigates issues when employees leave the company, and reduces corporate liability concerns. The primary advantage of relying on level 1 charging is its simplicity and cost-effectiveness, as it requires no extra investment in charging infrastructure. By leveraging the charging cable provided with the vehicle, companies can minimize their financial outlay while still supporting their employees' charging needs effectively.

Opting for non-networked level 2 chargers for high-mileage drivers

For higher mileage drivers with faster charging needs, a non-networked level 2 charger represents a compelling option. In this scenario, the employee pays for the unit and the installation and is then reimbursed by the company. This approach has several benefits:

  • Tax Rebates and Incentives. Employees may qualify for various tax writeoffs and incentives that are not available to companies, making the installation of a level 2 charger more affordable.
  • Ownership and Choice. Employees select and own the charging port, choose the contractor and pay for installation, which limits corporate liability and cuts costs.
  • Home Value Enhancement. Installing a level 2 charger can increase the value of the employee's home, providing them with an additional benefit and easy access to charging.
  • Accurate Reimbursement Still Possible. Modern electric vehicles record charging data, eliminating the need to get this information from a smart charger. Software like ReimburseEV can connect the dots and calculate accurate usage, costs and reimbursement.

This approach offers a cost-effective, lower-liability solution that benefits both the company and the employee, making it an attractive option for higher-mileage drivers.

The drawbacks of company-owned and networked chargers

Installing company-owned chargers, especially networked ones, is arguably the least favorable option for several reasons:

  1. Increased costs and liability: The installation and maintenance of networked chargers significantly increases costs. Moreover, owning the charging infrastructure introduces liability concerns, especially regarding data security.
  2. Connectivity and compatibility Issues: Networked chargers can suffer from connectivity issues, leading to inaccurate charging data and other operating and compliance problems.
  3. Risk of fraud: Many smart chargers do not know which vehicle is plugged in. Thus, they also risk being used by non-fleet vehicles, further complicating cost and energy management.
  4. Brand lock-in: A number of networked chargers are tied to specific OEM brands, limiting the flexibility in vehicle selection and potentially locking the company into a less dynamic fleet vehicle mix.

The drawbacks associated with company-owned and networked chargers underline the importance of evaluating charging needs carefully and opting for solutions that offer flexibility, reduce liability, and control costs.

Decision tree for fleet managers

Fleet managers should consider a decision tree approach to determine the most suitable charging solution for their needs. This decision-making process involves assessing the annual mileage of fleet drivers, access to charging, the benefits of tax incentives, and considering the long-term implications of charger ownership and ongoing liabilities. By adopting a thoughtful, structured approach to at-home charging decision-making, fleet managers can identify the most cost-effective and efficient charging solutions that align with their company's operational goals, culture, and drivers' needs.

Transitioning to an EV fleet and providing robust at-home charging solutions for your EV fleet drivers need not be a big operational bottleneck requiring huge investments in home charging infrastructure and installation costs. By understanding the specific operational demands of your EV fleet vehicles and the unique circumstances of your EV fleet drivers, companies can implement effective, efficient at-home charging solutions that save time, reduce costs, and minimize liability, all while supporting employees' transition to electric mobility.

–––

David Lewis is the founder and CEO of MoveEV, an AI-powered EV transition company that helps organizations convert fleet and employee-owned gas vehicles to electric by accurately reimbursing for charging electric vehicles at home.

This Earth Week, let's consider the benefits of home charging for electric vehicles. Photo via Getty Images

Expert: 5 ways residential charging enhances the environmental benefits of EVs

guest column

Electric vehicles are already considered as an environmentally conscientious alternative to traditional internal combustion engine vehicles, thanks to their zero tailpipe emissions. However, the environmental benefits of EVs can be further enhanced by implementing a home-base charging routine.

This is important not only for individuals looking to cut their household’s carbon footprint, but also for corporations that operate EV fleets and are looking for additional cost and environmental savings as part of their larger sustainability initiatives. What makes home charging the most eco-conscious option?

1. Increased use of renewable energy

More than 4 million homes in the United States support rooftop solar panels that provide renewable energy back to the property or back to the local grid. When EV owners install solar panels or other renewable energy systems at their homes, they can charge their vehicles using this clean energy, effectively reducing the carbon footprint associated with their EV use to nearly zero. This direct use of renewables circumvents the inefficiencies and emissions associated with the broader energy grid which, depending on the location, may still rely on fossil fuels to a significant extent. This synergy between EVs and clean local energy production is exemplified by Tesla’s solar roof program, which promotes the adoption of clean home-based energy production as part of the holistic EV ownership experience offered through their app.

2. Optimizing charging times for lower emissions

Home charging allows for more flexible and strategic charging schedules. EV owners can often take advantage of off-peak electricity rates and lower carbon intensity periods by charging their vehicles overnight or when renewable energy production (such as wind or solar power) is at its peak. This not only leads to cost savings for the consumer, but also contributes to a balanced demand on the electric grid, reducing the need for high-carbon emergency power sources that are sometimes activated during peak demand times. Apps like WhenToPlugIn use a carbon intensity forecasting tool to help consumers pick the best times to charge.

3. Reducing dependency on public charging infrastructure

Public charging stations are crucial for long-distance EV travel. For everyday use, the current public charging landscape is trailing the demand curve. The good news is that the majority of EV drivers can rely almost solely on home charging. This practice ensures public charging spots remain open for those who, due to circumstances such as residing in multi-unit dwellings without charging facilities, cannot charge at home. Consequently, this accessibility supports wider adoption of EVs, leading to a more substantial reduction in overall emissions.

4. Avoiding unnecessary travel to public charging stations

The average driver has to detour 2 miles to refill their gas tank. For electric vehicles, finding an available public charger can add many more miles to a trip. Home charging ensures that EVs can start each day with a “full tank” — which, with new EVs, means hundreds of miles of range before needing to plug in again. This reduction in driven miles not only saves time but also decreases the energy consumption and emissions associated with traveling to and from charging stations unnecessarily. By charging at home, EV owners can ensure their vehicles are ready to go without extra trips, further cutting down on the vehicle's overall environmental impact.

5. Enhancing battery longevity

Charging at home typically involves slower charging speeds compared to rapid chargers found in public stations. These slower, more controlled charging rates are less taxing on an EV's battery, contributing to longer battery life and better overall efficiency. Longer battery lifespans mean fewer replacements over the vehicle's life, significantly reducing the environmental impact associated with battery production and disposal. This not only has clear environmental benefits but also economic ones for the vehicle owner.

Conclusion

The environmental benefits of electric vehicles are well-documented, but by incorporating home charging, these benefits are amplified significantly. Through the increased use of renewable energy, optimizing charging times to utilize green power, and reducing reliance on public charging infrastructure, EV owners can further reduce their environmental footprint. As technology advances and the energy grid becomes cleaner, the potential for home charging to contribute to a more sustainable future only grows, reinforcing the role of electric vehicles in the transition to greener transportation options.

———

Kate L. Harrison is the co-founder and head of marketing at MoveEV, an AI-backed EV transition company that helps organizations convert fleet and employee-owned gas vehicles to electric, and reimburse for charging at home.

Here's a closer look at why Houston should be pushing for a more rapid transition to EVs. Photo via Getty Images

5 reasons Houston should prioritize electric vehicle adoption in 2024

guest column

As urban populations increase and more vehicles hit the roads across the United States, the quality of the air is compromised, directly impacting health, environment, and quality of life ― especially for children, minorities, and other vulnerable populations. A 2023 study by Site Selection Group placed Houston at the vanguard of this trend, projecting the metro area to grow nearly 10 percent by 2028, eclipsing 8 million residents.

According to Evolve Houston, a nonprofit working to accelerate EV adoption by bringing together local public and private organizations, residents, and government, the transportation sector emits 47 percent of all greenhouse gas emissions in the Houston area.

In this context, electric vehicles offer a practical solution to mitigate the challenges posed by tailpipe emissions. Their adoption in urban settings has the potential to significantly improve air quality and enhance public health. It’s no wonder the upcoming Houston Auto Show will feature a dedicated EV Pavilion.

Here's a closer look at why Houston should be pushing for a more rapid transition to EVs:

  1. Children’s development is at stake: Early childhood is a critical period for brain development. However, toxic air pollutants can significantly inhibit this growth during these formative years. The consequences include impairing children’s cognitive capabilities in reading and math, akin to missing an entire month of elementary school.
  2. EVs counteract historical racial inequalities: Beyond being an environmental challenge, air pollution is a glaring racial and social justice issue. Areas with fewer White residents suffer almost triple the nitrogen dioxide levels compared to predominantly White zones, as highlighted by the National Academy of Sciences. Historically marginalized communities, often near major traffic corridors, endure heightened pollution exposure. Transitioning to EVs can help address these deeply ingrained environmental inequities.
  3. The health benefits are monumental: A brighter future awaits if EVs become mainstream. According to the American Lung Association, if all new vehicles sold by 2035 are zero-emission, the U.S. could see up to 89,300 fewer premature deaths by 2050. Additionally, asthma attacks might decline by 2 million, saving 10.7 million workdays and resulting in an incredible $978 billion in public health savings.
  4. Global success stories prove the benefits: The impact of mass EV adoption has already been demonstrated outside the U.S. For instance, Norway has seen a notable reduction in dangerous particle emissions since 87 percent of its new car sales are now fully electric. Likewise, California’s adoption of electric vehicles correlated with a 3.2% decrease in asthma-related ER visits between 2013 and 2019.
  5. Cities have the power and means to lead the way: Many global cities are trailblazers in the electric transition. New York City, with more than 4,000 government-owned EVs, is a prime example. Moreover, by electrifying their take-home fleets, cities can set a precedent for their communities. Seeing neighbors drive electric vehicles daily serves as a powerful endorsement, motivating nearby residents to make the switch. Incentives like public charging stations, free parking for EVs, rebates for home charger installations, reimbursing for charging at home, and reduced tolls, further bolster this movement.

Houstonians stand at a pivotal juncture. The choices made today concerning transportation will profoundly influence the health and well-being of residents tomorrow. The shift to electric vehicles is more than just an eco-friendly choice; it's a commitment to a brighter, cleaner future. By leading with action and vision, cities can create a legacy that upcoming generations will appreciate and thrive in.

---

Kate L. Harrison is the co-founder and head of marketing at MoveEV, an AI-backed EV transition company that helps organizations convert fleet and employee-owned gas vehicles to electric, and reimburse for charging at home.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

SLB partners with renewables company to develop next-gen geothermal systems

geothermal partnership

Houston-based energy technology company SLB and renewable energy company Ormat Technologies have teamed up to fast-track the development and commercialization of advanced geothermal technology.

Their initiative focuses on enhanced geothermal systems (EGS). These systems represent “the next generation of geothermal technology, meant to unlock geothermal energy in regions beyond where conventional geothermal resources exist,” the companies said in a news release.

After co-developing EGS technology, the companies will test it at an existing Ormat facility. Following the pilot project, SLB and Nevada-based Ormat will pursue large-scale EGS commercialization for utilities, data center operators and other customers. Ormat owns, operates, designs, makes and sells geothermal and recovered energy generation (REG) power plants.

“There is an urgent need to meet the growing demand for energy driven by AI and other factors. This requires accelerating the path to clean and reliable energy,” Gavin Rennick, president of new energy at SLB, said in a news release.

Traditional geothermal systems rely on natural hot water or steam reservoirs underground, limiting the use of geothermal technology. EGS projects are designed to create thermal reservoirs in naturally hot rock through which water can circulate, transferring the energy back to the surface for power generation and enabling broader availability of geothermal energy.

The U.S. Department of Energy estimates next-generation geothermal, such as EGS, could provide 90 gigawatts of electricity by 2050.

Baker Hughes to provide equipment for massive low-carbon ammonia plant

coming soon

Houston-based energy technology company Baker Hughes has been tapped to supply equipment for what will be the world’s largest low-carbon ammonia plant.

French technology and engineering company Technip Energies will buy a steam turbine generator and compression equipment from Baker Hughes for Blue Point Number One, a $4 billion low-carbon ammonia plant being developed in Louisiana by a joint venture comprising CF Industries, JERA and Mitsui & Co. Technip was awarded a contract worth at least $1.1 billion to provide services for the Blue Point project.

CF, a producer of ammonia and nitrogen, owns a 40 percent stake in the joint venture, with JERA, Japan’s largest power generator, at 35 percent and Mitsui, a Japanese industrial conglomerate, at 25 percent.

The Blue Point Number One project, to be located at CF’s Blue Point ammonia production facility, will be capable of producing about 1.4 million metric tons of low-carbon ammonia per year and permanently storing up to 2.3 million metric tons of carbon dioxide.

Construction of the ammonia-making facility is expected to start in 2026, with production of low-carbon ammonia set to get underway in 2029.

“Ammonia, as a lower-carbon energy source, is poised to play a pivotal role in enabling and accelerating global sustainable energy development,” Alessandro Bresciani, senior vice president of energy equipment at Baker Hughes, said in a news release.

Earlier this year, British engineering and industrial gas company Linde signed a long-term contract to supply industrial gases for Blue Point Number One. Linde Engineering Americas is based in Houston.

Houston expert asks: Is the Texas grid ready for the future?

Guets Column

Texas has spent the past five years racing to strengthen its electric grid after Winter Storm Uri exposed just how vulnerable it was. Billions have gone into new transmission lines, grid hardening, and a surge of renewables and batteries. Those moves have made a difference, we haven’t seen another systemwide blackout like Uri, but the question now isn’t what’s been done, it’s whether Texas can keep up with what’s coming.

Massive data centers, electric vehicles, and industrial projects are driving electricity demand to unprecedented levels. NERC recently boosted its 10-year load forecast for Texas by more than 60%. McKinsey projects that U.S. electricity demand will rise roughly 40% by 2030 and double by 2050, with data centers alone accounting for as much as 11-12% of total U.S. electricity demand by 2030, up from about 4% today. Texas, already the top destination for new data centers, will feel that surge at a greater scale.

While the challenges ahead are massive and there will undoubtedly be bumps in the road (some probably big), we have an engaged Texas legislature, capable regulatory bodies, active non-profits, pragmatic industry groups, and the best energy minds in the world working together to make a market-based system work. I am optimistic Texas will find a way.

Why Texas Faces a Unique Grid Challenge

About 90% of Texas is served by a single, independent grid operated by ERCOT, rather than being connected to the two large interstate grids that cover the rest of the country. This structure allows ERCOT to avoid federal oversight of its market design, although it still must comply with FERC reliability standards. The trade-off is limited access to power from neighboring states during emergencies, leaving Texas to rely almost entirely on in-state generation and reserves when extreme weather hits.

ERCOT’s market design is also different. It’s an “energy-only” market, meaning generators are paid for electricity sold, not for keeping capacity available. While that lowers prices in normal times, it also makes it harder to finance backup, dispatchable generation like natural gas and batteries needed when the wind isn’t blowing or the sun isn’t shining.

The Risks Mounting

In Texas, solar and wind power supply a significant percentage of electricity to the grid. As Julie Cohn, a nonresident scholar at the Baker Institute, explains, these inverter‑based resources “connect through power electronics, which means they don’t provide the same physical signals to the grid that traditional generators do.” The Odessa incidents, where solar farms tripped offline during minor grid disturbances, showed how fragile parts of this evolving grid can be. “Fortunately, it didn’t result in customer outages, and it was a clear signal that Texas has the opportunity to lead in solving this challenge.”

Extreme weather adds more pressure while the grid is trying to adapt to a surge in use. CES research manager Miaomiao Rimmer notes: “Hurricane frequencies haven't increased, but infrastructure and population in their paths have expanded dramatically. The same hurricane that hit 70 years ago would cause far more damage today because there’s simply more in harm’s way.”

Medlock: “Texas has made significant strides in the last 5 years, but there’s more work to be done.”

Ken Medlock, Senior Director of the Center for Energy Studies at Rice University’s Baker Institute, argues that Texas’s problem isn’t a lack of solutions; it’s how quickly those solutions are implemented. He stresses that during the January 2024 cold snap, natural gas kept the grid stable, proving that “any system configuration with sufficient, dispatchable generation capacity would have kept the lights on.” Yet ERCOT load has exceeded dispatchable capacity with growing frequency since 2018, raising the stakes for future reliability.

Ken notes: “ERCOT has a substantial portfolio of options, including investment in dispatchable generation, storage near industrial users, transmission expansion, and siting generation closer to load centers. But allowing structural risks to reliability that can be avoided at a reasonable cost is unacceptable. Appropriate market design and sufficient regulatory oversight are critical.” He emphasizes that reliability must be explicitly priced into ERCOT’s market so backup resources can be built and maintained profitably. These resources, whether natural gas, nuclear, or batteries, cannot remain afterthoughts if Texas wants a stable grid.

Building a More Reliable Grid

For Texas to keep pace with rising demand and withstand severe weather, it must act decisively on multiple fronts, strengthening its grid while building for long-term growth.

  • Coordinated Planning: Align regulators, utilities, and market players to plan decades ahead, not just for next summer.
  • Balancing Clean and Reliable Power: Match renewable growth with flexible, dispatchable generation that can deliver power on demand.
  • Fixing Local Weak Spots: Harden distribution networks, where most outages occur, rather than focusing only on large-scale generation.
  • Market Reform and Technology Investment: Price reliability fairly and support R&D to make renewables strengthen, not destabilize, the grid.

In Conclusion

While Texas has undeniably improved its grid since Winter Storm Uri, surging electricity demand and intensifying weather mean the work is far from over. Unlike other states, ERCOT can’t rely on its neighbors for backup power, and its market structure makes new dispatchable resources harder to build. Decisive leadership, investment, and reforms will be needed to ensure Texas can keep the lights on.

It probably won’t be a smooth journey, but my sense is that Texas will solve these problems and do something spectacular. It will deliver more power with fewer emissions, faster than skeptics believe, and surprise us all.

-----------

Scott Nyquist is a senior advisor at McKinsey & Company and vice chairman, Houston Energy Transition Initiative of the Greater Houston Partnership. The views expressed herein are Nyquist's own and not those of McKinsey & Company or of the Greater Houston Partnership. This article originally appeared on LinkedIn.