Shares of the Houston-based company rose 2% before the market opened Friday. Photo via exxonmobil.com

ExxonMobil's fourth-quarter revenue and profits declined along with the price of oil, and the energy giant was weighed down by a hefty impairment charge tied to regulatory issues in California. Still, it posted a healthy adjusted profit and the company raised its quarterly dividend.

Shares of the Houston-based company rose 2% before the market opened Friday.

Revenue for the three months ended Dec. 31 declined to $84.34 billion from $95.43 billion. That fell short of the $91.81 billion that analysts polled by Zacks Investment Research expected.

Exxon earned $7.63 billion, or $1.91 per share, for the quarter. A year earlier, it earned $12.75 billion, or $2.25 per share.

The current quarter included a $2.3 billion impairment charge of which $2 billion related to regulatory obstacles in California that have prevented production and distribution assets from coming back online.

Excluding the charge and other items, earnings were $2.48 per share.

Analysts were calling for earnings of $2.21 per share. Exxon does not adjust its reported results based on one-time events such as asset sales.

The Spring, Texas-based company boosted its quarterly dividend 4% to 95 cents per share.

Exxon went on a bit of a shopping spree last year with oil prices surging.

In July, the company said it would pay $4.9 billion for Denbury Resources, an oil and gas producer that has entered the business of capturing and storing carbon and stands to benefit from changes in U.S. climate policy.

In October Exxon topped that deal by announcing that it would buy shale operator Pioneer Natural Resources for $60 billion. Two months later, the Federal Trade Commission, which enforces federal antitrust law, asked for additional information from the companies about the proposed deal. The request is a step the agency takes when reviewing whether a merger could be anticompetitive under U.S. law. Pioneer disclosed the request in a filing Tuesday.

Elevated levels of cash for all big producers drove a massive consolidation in the energy sector. In October Chevron said it would buy Hess Corp. for $53 billion.

Chevron also reported its financial results Friday, posting a fourth-quarter adjusted profit of $3.45 per share on revenue of $47.18 billion. Wall Street was calling for a profit of $3.29 per share on revenue of $52.59 billion. Its stock climbed slightly in premarket.

The San Ramon, California-based company said both U.S. and worldwide annual production hit a record. Chevron's board approved an increase in the quarterly dividend to $1.63 per share, up 8%.

On Thursday, Shell plc reported an adjusted profit of $2.22 for the fourth quarter, with revenue totaling $80.13 billion. Analysts predicted a profit of $1.94 per share. Shell's stock edged slightly higher before the market open.

Oil markets are being stretched by cutbacks in oil production from Saudi Arabia and Russia, and the war between Israel and Hamas still potentially runs the risk of igniting a broader conflict in the Middle East. While attacks on Israel do not disrupt global oil supply, according to an analysis by the U.S Energy Information Administration, “they raise the potential for oil supply disruptions and higher oil prices.”

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Engie to add 'precycling' agreements for forthcoming solar projects

reduce, reuse

Houston-based Engie North America has partnered with Arizona-based Solarcycle to recycle 1 million solar panels on forthcoming projects with a goal of achieving project circularity.

The collaboration allows Engie to incorporate "precycling" provisions into power purchase agreements made on 375 megawatts worth of projects in the Midwest, which are expected to be completed in the next few years, according to a news release from Engie.

Engie will use Solarcycle's advanced tracking capabilities to ensure that every panel on the selected projects is recycled once it reaches its end of life, and that the recovered materials are returned to the supply chain.

Additionally, all construction waste and system components for the selected projects will be recycled "to the maximum degree possible," according to Engie.

“We are delighted to bring this innovative approach to life. Our collaboration with Solarcycle demonstrates the shared commitment we have to the long-term sustainability of our industry,” Caroline Mead, SVP power marketing at ENGIE North America, said in the release.

Solarcyle, which repairs, refurbishes, reuses and recycles solar power systems, estimates that the collaboration and new provisions will help divert 48 million pounds of material from landfills and avoid 33,000 tons of carbon emissions.

“ENGIE’s precycling provision sets a new precedent for the utility-scale solar industry by proving that circular economy principles can be achieved without complex regulatory intervention and in a way that doesn’t require an up-front payment," Jesse Simons, co-founder and chief commercial officer at SOLARCYCLE, added in the release. "We’re happy to work creatively with leaders like ENGIE to support their commitment to circularity, domestic energy, and sustainability.”

Texas gets one step closer to CCUS permitting authority

The View From HETI

This month, the U.S. Environmental Protection Agency (EPA) announced its proposed approval of Texas request for permitting authority under the Safe Drinking Water Act (SDWA) for Class VI underground injection wells for carbon capture, utilization and storage (CCUS) in the state. The State of Texas already has permitting authority for Class I-V injection wells. Granting authority for Class VI wells recognizes that Texas is well positioned to protect its underground sources of drinking water while also advancing economic opportunity and energy security.

“In the Safe Drinking Water Act, Congress laid out a clear vision for delegating decision-making from EPA to states that have local expertise and understand their water resources, geology, communities, and opportunities for economic growth,” said EPA Administrator Lee Zeldin in a news release. “EPA is taking a key step to support cooperative federalism by proposing to approve Texas to permit Class VI wells in the state.”

The Greater Houston Partnership’s Houston Energy Transition Initiative (HETI) has supported efforts to bring CCUS to a broader commercial scale since the initiative’s inception. Earlier this year, HETI commissioned a “study of studies” by Texas A&M University’s Energy Institute and Mary K. O’Connor Process Safety Center on the operational history and academic literature of CCUS safety in the United States. The report revealed that with state and federal regulations as well as technical and engineering technologies available today, CCUS is safe and presents a very low risk of impacts to human life. This is useful research for stakeholders interested in learning more about CCUS.

“The U.S. EPA’s proposal to approve Texas’ application for Class VI well permitting authority is yet another example of Texas’ continued leadership in meeting the dual challenge of producing more energy with less emissions,” said Jane Stricker, Senior Vice President of Energy at the Greater Houston Partnership and Executive Director of the Houston Energy Transition Initiative. “We applaud the U.S. EPA and Texas Railroad Commission for their collaborative efforts to ensure the supply of safe, affordable and reliable energy, and we call on all stakeholders to voice their support for the application during the public comment period.”

The U.S. EPA has announced a public comment period that will include a virtual public hearing on July 24, 2025 from 5-8 pm and conclude on July 31, 2025.

———

This article originally ran on the Greater Houston Partnership's Houston Energy Transition Initiative blog. HETI exists to support Houston's future as an energy leader. For more information about the Houston Energy Transition Initiative, EnergyCapitalHTX's presenting sponsor, visit htxenergytransition.org.

Houston team’s discovery brings solid-state batteries closer to EV use

a better battery

A team of researchers from the University of Houston, Rice University and Brown University has uncovered new findings that could extend battery life and potentially change the electric vehicle landscape.

The team, led by Yan Yao, the Hugh Roy and Lillie Cranz Cullen Distinguished Professor of Electrical and Computer Engineering at UH, recently published its findings in the journal Nature Communications.

The work deployed a powerful, high-resolution imaging technique known as operando scanning electron microscopy to better understand why solid-state batteries break down and what could be done to slow the process.

“This research solves a long-standing mystery about why solid-state batteries sometimes fail,” Yao, corresponding author of the study, said in a news release. “This discovery allows solid-state batteries to operate under lower pressure, which can reduce the need for bulky external casing and improve overall safety.”

A solid-state battery replaces liquid electrolytes found in conventional lithium-ion cells with a solid separator, according to Car and Driver. They also boast faster recharging capabilities, better safety and higher energy density.

However, when it comes to EVs, solid-state batteries are not ideal since they require high external stack pressure to stay intact while operating.

Yao’s team learned that tiny empty spaces, or voids, form within the solid-state batteries and merge into a large gap, which causes them to fail. The team found that adding small amounts of alloying elements, like magnesium, can help close the voids and help the battery continue to function. The team captured it in real-time with high-resolution videos that showed what happens inside a battery while it’s working under a scanning electron microscope.

“By carefully adjusting the battery’s chemistry, we can significantly lower the pressure needed to keep it stable,” Lihong Zhao, the first author of this work, a former postdoctoral researcher in Yao’s lab and now an assistant professor of electrical and computer engineering at UH, said in the release. “This breakthrough brings solid-state batteries much closer to being ready for real-world EV applications.”

The team says it plans to build on the alloy concept and explore other metals that could improve battery performance in the future.

“It’s about making future energy storage more reliable for everyone,” Zhao added.

The research was supported by the U.S. Department of Energy’s Battery 500 Consortium under the Vehicle Technologies Program. Other contributors were Min Feng from Brown; Chaoshan Wu, Liqun Guo, Zhaoyang Chen, Samprash Risal and Zheng Fan from UH; and Qing Ai and Jun Lou from Rice.