The first phase of the Pelican Gulf Coast Carbon Removal project recently received nearly $4.9 million in grants. Photo via Getty Images

The University of Houston is spilling details about its role in a potential direct air capture, or DAC, hub in Louisiana.

The first phase of the Pelican Gulf Coast Carbon Removal project recently received nearly $4.9 million in grants, including almost $3 million from the U.S. Department of Energy. Led by Louisiana State University, the Pelican consortium includes UH and Shell, whose U.S. headquarters is in Houston.

The funding will go toward studying the feasibility of a DAC hub that would pull carbon dioxide from the air and either store it in deep geological formations or use it to manufacture various products, such as concrete.

“This support of development and deployment of direct air capture technologies is a vital part of carbon management and allows us to explore sustainable technological and commercial opportunities,” Ramanan Krishnamoorti, vice president for energy and innovation at UH, says in a news release.

Chemical engineer Joseph Powell, founding executive director of the university’s Energy Transition Institute, will be the primary leader of UH’s work on the Pelican project.

“DAC can be an important technology for addressing difficult-to-decarbonize sectors such as aviation and marine transport as well as chemicals, or to achieve negative emissions goals,” Powell says.

Powell, a fellow of the American Institute of Chemical Engineers, was Shell’s first-ever chief scientist for chemical engineering from 2006 until his retirement in 2020. He joined Shell in 1988.

Shell is the Pelican project’s “technical delivery partner.”

“Advancing carbon management technologies is a critical part of the energy transition, and effectively scaling this technology will require continued collaboration, discipline, and innovation,” says Adam Prince, general manager of carbon capture storage strategy and growth at Shell.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

New report maps Houston workforce development strategies as companies transition to cleaner energy

to-do list

The University of Houston’s Energy University latest study with UH’s Division of Energy and Innovation with stakeholders from the energy industry, academia have released findings from a collaborative white paper, titled "Workforce Development for the Future of Energy.”

UH Energy’s workforce analysis found that the greatest workforce gains occur with an “all-of-the-above” strategy to address the global shift towards low-carbon energy solutions. This would balance electrification and increased attention to renewables with liquid fuels, biomass, hydrogen, carbon capture, utilization and storage commonly known as CCUS, and carbon dioxide removal, according to a news release.

The authors of the paper believe this would support economic and employment growth, which would leverage workers from traditional energy sectors that may lose jobs during the transition.

The emerging hydrogen ecosystem is expected to create about 180,000 new jobs in the greater Houston area, which will offer an average annual income of approximately $75,000. Currently, 40 percent of Houston’s employment is tied to the energy sector.

“To sustain the Houston region’s growth, it’s important that we broaden workforce participation and opportunities,” Ramanan Krishnamoorti, vice president of energy and innovation at UH, says in a news release. “Ensuring workforce readiness for new energy jobs and making sure we include disadvantaged communities is crucial.”

Some of the key takeaways include strategies that include partnering for success, hands-on training programs, flexible education pathways, comprehensive support services, and early and ongoing outreach initiatives.

“The greater Houston area’s journey towards a low-carbon future is both a challenge and an opportunity,” Krishnamoorti continues. “The region’s ability to adapt and lead in this new era will depend on its commitment to collaboration, innovation, and inclusivity. By preparing its workforce, engaging its communities, and leveraging its industrial heritage, we can redefine our region and continue to thrive as a global energy leader.”

The study was backed by federal funding from the Department of the Treasury through the State of Texas under the Resources and Ecosystems Sustainability, Tourist Opportunities, and Revived Economies of the Gulf Coast States Act of 2012.

Houston geothermal startup selects Texas location for first energy storage facility

major milestone

Houston-based geothermal energy startup Sage Geosystems has teamed up with a utility provider for an energy storage facility in the San Antonio metro area.

The three-megawatt EarthStore facility will be on land controlled by the San Miguel Electric Cooperative, which produces electricity for customers in 47 South Texas counties. The facility will be located in the town of Christine, near the cooperative’s coal-fired power plant.

Sage says its energy storage system will be paired with solar energy to supply power for the grid operated by the Electric Reliability Council of Texas (ERCOT). The facility is set to open later this year.

“Once operational, our EarthStore facility in Christine will be the first geothermal energy storage system to store potential energy deep in the earth and supply electrons to a power grid,” Cindy Taff, CEO of Sage Geosystems, says in a news release.

The facility is being designed to store geothermal energy during six- to 10-hour periods.

“Long-duration energy storage is crucial for the ERCOT utility grid, especially with the increasing integration of intermittent wind and solar power generation,” says Craig Courter, CEO of the San Miguel Electric Cooperative.