A Rice University team researching carbon nanotube synthesis has received $4.1 million funding from both Rice’s Carbon Hub and The Kavli Foundation. Photo by Gustavo Raskosky/Rice University

A Rice University-led team of scientists has been awarded a $4.1 million grant to optimize a synthesis process that could make carbon materials sustainable and affordable on a large scale.

Known as carbon nanotube (CNT) synthesis, the process has the ability to create hollow cylindrical nanoscale structures made from carbon atoms that are strong, lightweight and carry heat and electricity well. CNT synthesis evolved across multiple countries around the same time, according to Rice. But to scale up the process in a way that could create alternatives to materials dependent on heavy industry, Matteo Pasquali, the team's leader and the A.J. Hartsook Professor of Chemical and Biomolecular Engineering, says collaboration will be required.

“We have to apply a collaborative mindset to solve this problem,” Pasquali says in a statement. “We believe that by bringing together a dedicated interdisciplinary community, this project will lead to improvements in reactor efficiency and help identify further gaps in instrumentation and modeling.”

The grant seeks to achieve that. The funds come from both Rice’s Carbon Hub, which contributed $2.2 million to the team, and The Kavli Foundation, which granted $1.9 million in the form of a Kavli Exploration Award in Nanoscience for Sustainability.

The Kavli Foundation supports research in astrophysics, nanoscience, neuroscience and theoretical physics. Winners of its Kavli Prize, which recognizes scientific breakthroughs, often go on to win the Nobel Prize.

“We are proud to partner with Rice University to support this important high-risk, high-reward research,” says Amy Bernard, director of life sciences at The Kavli Foundation, says in a statement.

Pasquali is the director and one of the creators of Rice's Carbon Hub, a collaborative group of corporations, researchers, universities and nonprofits focused on decarbonizing the economy. He says the grant will help the team develop tools to shed light on CNT formation and reaction zones.

“We are at a critical juncture in carbon research, and it is really important that we shed light on the physical and chemical processes that drive CNT synthesis,” Pasquali says. “Currently, reactors are black boxes, which prevents us from ramping up synthesis efficiency. We need to better understand the forces at play in CNT formation by developing new tools to shed light on the reaction zone and find ways to leverage it to our advantage.”

Boris Yakobson, the Karl F. Hasselmann Professor of Engineering and professor of materials science and nanoengineering at Rice, and Thomas Senftle, assistant professor of chemical and biomolecular engineering at Rice, are also involved in the project. Other collaborators hail from the UK, Italy, Korea, and Spain, as well as U.S. labs and universities, including Harvard, Stanford, MIT and others.

In October, a separate team of Rice researchers released a study on a new synthesis process with applications in developing commercially relevant solar cells.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Rice University spinout lands $500K NSF grant to boost chip sustainability

cooler computing

HEXAspec, a spinout from Rice University's Liu Idea Lab for Innovation and Entrepreneurship, was recently awarded a $500,000 National Science Foundation Partnership for Innovation grant.

The team says it will use the funding to continue enhancing semiconductor chips’ thermal conductivity to boost computing power. According to a release from Rice, HEXAspec has developed breakthrough inorganic fillers that allow graphic processing units (GPUs) to use less water and electricity and generate less heat.

The technology has major implications for the future of computing with AI sustainably.

“With the huge scale of investment in new computing infrastructure, the problem of managing the heat produced by these GPUs and semiconductors has grown exponentially. We’re excited to use this award to further our material to meet the needs of existing and emerging industry partners and unlock a new era of computing,” HEXAspec co-founder Tianshu Zhai said in the release.

HEXAspec was founded by Zhai and Chen-Yang Lin, who both participated in the Rice Innovation Fellows program. A third co-founder, Jing Zhang, also worked as a postdoctoral researcher and a research scientist at Rice, according to HEXAspec's website.

The HEXASpec team won the Liu Idea Lab for Innovation and Entrepreneurship's H. Albert Napier Rice Launch Challenge in 2024. More recently, it also won this year's Energy Venture Day and Pitch Competition during CERAWeek in the TEX-E student track, taking home $25,000.

"The grant from the NSF is a game-changer, accelerating the path to market for this transformative technology," Kyle Judah, executive director of Lilie, added in the release.

---

This article originally ran on InnovationMap.

Rice research team's study keeps CO2-to-fuel devices running 50 times longer

new findings

In a new study published in the journal Science, a team of Rice University researchers shared findings on how acid bubbles can improve the stability of electrochemical devices that convert carbon dioxide into useful fuels and chemicals.

The team led by Rice associate professor Hoatian Wang addressed an issue in the performance and stability of CO2 reduction systems. The gas flow channels in the systems often clog due to salt buildup, reducing efficiency and causing the devices to fail prematurely after about 80 hours of operation.

“Salt precipitation blocks CO2 transport and floods the gas diffusion electrode, which leads to performance failure,” Wang said in a news release. “This typically happens within a few hundred hours, which is far from commercial viability.”

By using an acid-humidified CO2 technique, the team was able to extend the operational life of a CO2 reduction system more than 50-fold, demonstrating more than 4,500 hours of stable operation in a scaled-up reactor.

The Rice team made a simple swap with a significant impact. Instead of using water to humidify the CO2 gas input into the reactor, the team bubbled the gas through an acid solution such as hydrochloric, formic or acetic acid. This process made more soluble salt formations that did not crystallize or block the channels.

The process has major implications for an emerging green technology known as electrochemical CO2 reduction, or CO2RR, that transforms climate-warming CO2 into products like carbon monoxide, ethylene, or alcohols. The products can be further refined into fuels or feedstocks.

“Using the traditional method of water-humidified CO2 could lead to salt formation in the cathode gas flow channels,” Shaoyun Hao, postdoctoral research associate in chemical and biomolecular engineering at Rice and co-first author, explained in the news release. “We hypothesized — and confirmed — that acid vapor could dissolve the salt and convert the low solubility KHCO3 into salt with higher solubility, thus shifting the solubility balance just enough to avoid clogging without affecting catalyst performance.”

The Rice team believes the work can lead to more scalable CO2 electrolyzers, which is vital if the technology is to be deployed at industrial scales as part of carbon capture and utilization strategies. Since the approach itself is relatively simple, it could lead to a more cost-effective and efficient solution. It also worked well with multiple catalyst types, including zinc oxide, copper oxide and bismuth oxide, which are allo used to target different CO2RR products.

“Our method addresses a long-standing obstacle with a low-cost, easily implementable solution,” Ahmad Elgazzar, co-first author and graduate student in chemical and biomolecular engineering at Rice, added in the release. “It’s a step toward making carbon utilization technologies more commercially viable and more sustainable.”

A team led by Wang and in collaboration with researchers from the University of Houston also shared findings on salt precipitation buildup and CO2RR in a recent edition of the journal Nature Energy. Read more here.