The rig stands 225 feet tall and extends 8,000 feet below the subsurface. Photo via exxonmobil.com

ExxonMobil announced this month that it has officially broken ground on a groundbreaking carbon dioxide storage site.

According to a release from the company, a new rig is currently being used to gather information about an underground site in Southeast Texas. The rig stands 225 feet tall, but more importantly extends 8,000 feet below the subsurface to investigate if the site is a safe place to store carbon underground.

“Everyone’s excited about this appraisal well because we’re literally breaking ground on a new chapter of our work to help reduce industrial emissions,” Joe Colletti, who oversees carbon capture and storage development along the Gulf Coast for Exxon, says in a statement.

Exxon plans to move the rig to other sites in the Gulf Coast in the future for clients Nucor Corp., CF Industries and Linde.

In the last year, Exxon has made agreements with these regional companies to store carbon captured from their operations.

  • Exxon agreed to transport and permanently store up to 2.2 million metric tons of carbon dioxide each year from Linde’s hydrogen production facility in Beaumont, Texas when it launches in 2025.
  • Exxon agreed to store up to 2 million metric tons per year of CO2 captured from CF Industries’ ammonia plant in Donaldsonville, Louisiana, starting in 2025.
  • Exxon agreed to capture, transport and store up to 800,000 metric tons per year of CO2 from Nucor’s direct reduced iron manufacturing site in Convent, Louisiana starting in 2026.

Together, the three agreements represent a total of 5 million metric tons per year that Exxon plans to transport and store for third-party customers.

“Our agreement with Nucor is the latest example of how we’re delivering on our mission to help accelerate the world's path to net zero and build a compelling new business,” Dan Ammann, president of ExxonMobil Low Carbon Solutions, says in a statement over the summer. “Momentum is building as customers recognize our ability to solve emission challenges at scale.”

In addition to the carbon storage agreements, the energy giant also completed the acquisition of Denbury Inc. this month in an all-stock transaction valued at $4.9 billion. The deal adds more than 1,300 miles, including nearly 925 miles of CO2 pipelines in Louisiana, Texas and Mississippi to Exxon's CO2 pipeline network.

The deal was first announced this summer.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston scientists develop 'recharge-to-recycle' reactor for lithium-ion batteries

reduce, recharge, recycle

Engineers at Rice University have developed a cleaner, innovative process to turn end-of-life lithium-ion battery waste into new lithium feedstock.

The findings, recently published in the journal Joule, demonstrate how the team’s new “recharge-to-recycle” reactor recharges the battery’s waste cathode materials to coax out lithium ions into water. The team was then able to form high-purity lithium hydroxide, which was clean enough to feed directly back into battery manufacturing.

The study has major implications for the electric vehicle sector, which significantly contributes to the waste stream from end-of-life battery packs. Additionally, lithium tends to be expensive to mine and refine, and current recycling methods are energy- and chemical-intensive.

“Directly producing high-purity lithium hydroxide shortens the path back into new batteries,” Haotian Wang, associate professor of chemical and biomolecular engineering, co-corresponding author of the study and co-founder of Solidec, said in a news release. “That means fewer processing steps, lower waste and a more resilient supply chain.”

Sibani Lisa Biswal, chair of Rice’s Department of Chemical and Biomolecular Engineering and the William M. McCardell Professor in Chemical Engineering, also served as co-corresponding author on the study.

“We asked a basic question: If charging a battery pulls lithium out of a cathode, why not use that same reaction to recycle?” Biswal added in the release. “By pairing that chemistry with a compact electrochemical reactor, we can separate lithium cleanly and produce the exact salt manufacturers want.”

The new process also showed scalability, according to Rice. The engineers scaled the device to 20 square centimeters, then ran a 1,000-hour stability test and processed 57 grams of industrial black mass supplied by industry partner Houston-based TotalEnergies. The results produced lithium hydroxide that was more than 99 percent pure. It also maintained an average lithium recovery rate of nearly 90 percent over the 1,000-hour test, showing its durability. The process also worked across multiple battery chemistries, including lithium iron phosphate, lithium manganese oxide and nickel-manganese-cobalt variants.

Looking ahead, the team plans to scale the process and consider ways it can sustain high efficiency for greater lithium hydroxide concentrations.

“We’ve made lithium extraction cleaner and simpler,” Biswal added in the release. “Now we see the next bottleneck clearly. Tackle concentration, and you unlock even better sustainability.

DOE taps Texas companies for $56M in Strategic Petroleum Reserve deliveries

reserve refill

Two companies with ties to the Houston area have been awarded federal contracts totaling nearly $55.8 million to supply about 1 million barrels of crude oil for the nation’s depleted Strategic Petroleum Reserve.

Houston-based Trafigura Trading will provide two-thirds of the oil, and Dallas-based Energy Transfer Crude Marketing will provide the remaining one-third. Energy Transfer, the parent company of Energy Transfer Crude Marketing, operates a 330-acre oil terminal at the Houston Ship Channel.

The U.S. Department of Energy (DOE), which awarded the contracts, said Trafigura and Energy Transfer will deliver the crude oil from Dec. 1 through Jan. 31 to the Strategic Petroleum Reserve’s Bryan Mound storage site near Freeport.

The Strategic Petroleum Reserve, the world’s largest emergency supply of crude oil, can hold up to 714 million barrels of crude oil across 61 underground salt caverns at four sites along the Gulf Coast. The reserve currently contains 410 million barrels of crude oil. During the pandemic, the Biden administration ordered a 180 million-barrel drawdown from the reserve to help combat high gas prices triggered by Russia’s war with Ukraine.

The four strategic reserve sites are connected to 24 Gulf Coast refineries, and another six refineries in Kentucky, Michigan and Ohio.

“Awarding these contracts marks another step in the important process of refilling this national security asset,” U.S. Energy Secretary Chris Wright said.

In March, Wright estimated it would take $20 billion and many years to fill the Strategic Petroleum Reserve to its maximum capacity, according to Reuters

.