How did the IRA affect energy transition project development? Experts discussed the positive impacts — as well as the challenges still to overcome. Photo courtesy of Renewable Energy Alliance Houston

It's been officially a year since the Inflation Reduction Act was enacted, so it's no surprise that looking at the IRA's impact dominated the discussion at a recent industry event.

The second annual Renewable Energy Leadership Conference, presented by Renewable Energy Alliance Houston and Rice Business Executive Education, featured thought leadership from 20 experts on Tuesday, August 22. While some panels zeroed in on hiring and loan options for energy transition companies, the day's program kicked off with a couple panels looking both back and forward on the IRA.

When looking at the IRA's impact, the experts identified a few key things. Here's what they said at the conference.

Going beyond tax credits and regulation

Greg Matlock, EY's global energy and resources industry tax leader, kicked off the IRA discussion after John Berger, CEO of Sunnova, gave a keynote address.

Matlock set the scene for the IRA, explaining that previous legislation incentivizing clean energy changes mostly stayed within regulation and tax credits. Credits as a tax policy fail to incentivize organizations that are, for various reasons, are tax exempt or are already paying insignificant taxes. The fundamental switch of the IRA was to a "want to" rather than a "have to."

"Everyone has had aspirations, but with aspirations without capital, it's hard to get movement," Matlock says. "But what the IRA did was create a liquidity in the market and added access to an investor base. Now you're pairing aspirations and capital, and now you're seeing movement in the market."

The IRA, Matlock continues, also got the ball rolling on expanding requirements for tax incentives. Previously, a specific technology has to be clearly identified to be qualified for a credit. Moving forward, the IRA improved this qualification process and in the future, there will be be technology neutral incentives.

One thing Matlock also highlighted was the limitations of tax credits — dollar for dollar credit.

"Two years ago, if you called an organization that was tax exempt (about) a project that generates tax credits, why would that want that?" Matlock says. "For the first time, you can sell federal tax credits — not all of them — for cash and tax free to businesses who are paying taxes."

Explaining that there are limitations, Matlock says this process had a significant impact encouraging movement in this space — especially from surprising sources.

"We're seeing companies that have absolutely no connectivity to our energy industry making investments through the purchase of tax credits to fund the development of projects," Matlock says.

A focus on carbon capture and hydrogen

Matlock continues to explain how carbon capture and hydrogen became two case studies for the impact of the IRA.

Prior to the IRA, over 16 countries incentivized hydrogen production, he explains, and the United States was not one of them.

"With the signing of the IRA, we went from the worst to the first," Matlock says.

Carbon capture development was directed more at traditional energy industries. The IRA enactment represented a switch for these companies from regulatory moves to incentivization, which has been more effective in general, Matlock says.

Over the past year, according to the American Clean Power Association, more than $271 billion in investment in clean energy projects has occurred since the IRA was enacted. When it comes to jobs, over 170,000 clean energy jobs have been announced since the IRA.

Problematic permitting and pricing volatility 

In a subsequent panel, the three thought leaders looked at the IRA a bit more critically. While the IRA spurred momentum, it also shined a spotlight on some of the industry's challenges.

"The IRA for developers has been very positive. It provided certainty and allowed developers and investors alike to plan long term," says Omar Aboudaher, senior vice president of development for Leeward Renewable Energy. "With that comes challenges, including exacerbating some existing problems with permitting."

Aboudaher explains that the IRA-inspired burst of projects has caused a lot more permits for the increase of development. And, he adds, there's not a concentrated effort. It's happening in silos on the various levels of government.

"On the permitting side, there's a big need to streamline permitting," Aboudaher says. "In some parts of the country, it can take 6 to 10 years to permit your project."

On the investor side, it's also a problem, adds Fred Day, managing director of investments at Brookfield Asset Management.

"Even though we have this IRA, a lack of permitting reform does create a bottleneck," he says.

Another challenge is a disconnect between supply and demand. While the IRA has incentivized solar energy generation per hour of energy, meaning that its cheaper than ever to make energy via solar panels, there's not yet the demand infrastructure for this energy. This incentivization structure has already been in place for wind power.

"I think it's going to be a real problem. It's a real problem with wind today," Doug Moorehead, COO of Broad Reach Power, says, explaining that there's volatility in pricing. "When the wind is high, prices are really low. When wind is low, prices are high."

All of this is leading to an imbalance of market demand and supply, he continues. Jessica Adkins, partner at Sidley Austin LLP and moderator, adds that there's built in volatility for solar since solar energy is confined to the time of day when the sun is out.

"Any time you're incentivize to produce regardless of demand, it's going to be an issue," Moorehead says.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston startup launches groundbreaking mineral hydrogen pilot

pilot project

Houston climatech company Vema Hydrogen recently completed drilling its first two pilot wells in Quebec for its Engineered Mineral Hydrogen (EMH) pilot. The company says the project is the first EMH pilot of its kind.

Vema’s EMH technology produces low-cost, high-purity hydrogen from subsurface rock formations. It has the capacity to support e-fuel and clean mobility industries and the shipping and air transport markets. The pilot project is the first field deployment of the company’s technology.

“This pilot will provide the critical data needed to validate Engineered Mineral Hydrogen at commercial scale and demonstrate that Quebec can lead the world in this emerging clean energy category,” Pierre Levin, CEO of Vema Hydrogen, said in a news release.

Levin added that the sample collected thus far in the pilot is “exactly what we expected, and is very promising for hydrogen yields.”

Through the pilot, Vema will collect core samples and begin subsurface analysis to evaluate fluid movement and monitor hydrogen production from the wells. The data collected from the pilot will shape Vema's plans for commercialization and provide documentation for proof of concept in the field, according to the news release.

“Vema Hydrogen perfectly embodies the spirit of the grey to green movement: transforming mining liabilities into drivers of innovation and ecological transition,” Ludovic Beauregard, circular economy commissioner at the Thetford Region Economic Development Corporation, added in the release.

“This project demonstrates that it is possible to reconcile the revitalization of mining regions, clean energy and sustainable economic development for these areas.”

In addition to its pilot in Canada, Vema also recently signed a 10-year hydrogen purchase and sale agreement with San Francisco-based Verne Power to supply clean hydrogen for data centers across California. The company was selected as a Qualified Supplier by The First Public Hydrogen Authority, which will allow it to supply clean hydrogen at scale to California’s municipalities, transit agencies and businesses through the FPH2 network.

Vema aims to produce Engineered Mineral Hydrogen for less than $1 per kilogram. The company, founded in 2024, is working toward a gigawatt-scale hydrogen supply in North America.

Houston startup wins funding through new Bezos Earth Fund initiative

global winner

A Houston-based climatech startup is one of the first 16 companies in the world to receive funding through a new partnership between The Bezos Earth Fund and The Earthshot Prize.

Mati Carbon will receive $100,000 through the Bezos Earth Fund’s Acceleration Initiative. The initiative will provide $4.8 million over three years to support climate and nature solutions startups. It's backed by The Bezos Earth Fund, which was founded through a $10 billion gift from Amazon founder Jeff Bezos and aims to "transform the fight against climate change."

The Acceleration Initiative will choose 16 startups each year from The Earthshot Prize’s global pool of nominations that were not selected as finalists. The Earthshot Prize, founded by Prince William, awards £1 million to five energy startups each year over a decade.

"The Earthshot Prize selects 15 finalists each year, but our wider pool of nominations represents a global pipeline of innovators and investable solutions that benefit both people and planet. Collaborating with the Bezos Earth Fund to support additional high-potential solutions is at the heart of commitment to working with partners who share our vision," Jason Knauf, CEO of The Earthshot Prize, said in a news release. "By combining our strengths to support 48 carefully selected grantees from The Earthshot Prize’s pool of nominations, our partnership with the Bezos Earth Fund means we will continue to drive systemic change beyond our annual Prize cycle, delivering real-world impact at scale and speed.”

Mati Carbon was founded in 2022 by co-directors Shantanu Agarwal and Rwitwika Bhattacharya. It removes carbon through its Enhanced Rock Weathering (ERW) program and works with agricultural farms in Africa and India. Mati Carbon says the farmers it partners with are some of the most vulnerable to the impacts of climate change.

"As one of the first 16 organizations selected, this support enables us to expand our operations, move faster and think bigger about the impact we can create," the company shared in a LinkedIn post.

The other grantees from around the world include:

  • Air Protein Inc.
  • Climatenza Solar
  • Instituto Floresta Viva
  • Forum Konservasi Leuser
  • Fundación Rewilding Argentina
  • Hyperion Robotics
  • InPlanet
  • Lasso
  • Mandai Nature
  • MERMAID
  • Asociación Conservacionista Misión Tiburón
  • Simple Planet
  • Snowchange Cooperative
  • tHEMEat Company
  • UP Catalyst

Mati Carbon also won the $50 million grand prize in the XPRIZE Carbon Removal competition, backed by Elon Musk’s charitable organization, The Musk Foundation, last year.

Texas' oil and gas foundation could boost its geothermal future, UH says

future of geothermal

Equipped with the proper policies and investments, Texas could capitalize on its oil and gas infrastructure and expertise to lead the U.S. in development of advanced geothermal power, a new University of Houston white paper says.

Drilling, reservoir development and subsurface engineering are among the Texas oil and gas industry’s capabilities that could translate to geothermal energy, according to a news release. Furthermore, oil and gas skills, data, technology and supply chains could help make geothermal power more cost-effective.

Up to 80 percent of the investment required for a geothermal project involves capacity and skills that are common in the oil and gas industry, the white paper points out.

Building on its existing oil-and-gas foundation, Texas could help accelerate production of geothermal energy, lower geothermal energy costs and create more jobs in the energy workforce, according to the news release.

The paper also highlights geothermal progress made by Houston-based companies Fervo Energy, Quaise Energy and Sage Geosystems, as well as Canada-based Eavor Technologies Inc.

UH’s Division of Energy published the white paper, Advanced Geothermal: Opportunities and Challenges, in partnership with the C.T. Bauer College of Business’ Gutierrez Energy Management Institute.

“Energy demand, especially electricity demand, is continuing to grow, and we need to develop new low-carbon energy sources to meet those needs,” Greg Bean, executive director of the institute and author of the white paper, said of geothermal’s potential.