James Tour of Rice University has received funding to support his energy transition research. Photo via rice.edu

A Rice University chemist James Tour has secured a new $12 million cooperative agreement with the U.S. Army Engineer Research and Development Center on the team’s work to efficiently remove pollutants from soil.

The four-year agreement will support the team’s ongoing work on removing per- and polyfluoroalkyl substances (PFAS) from contaminated soil through its rapid electrothermal mineralization (REM) process, according to a statement from Rice.

Traditionally PFAS have been difficult to remove by conventional methods. However, Tour and the team of researchers have been developing this REM process, which heats contaminated soil to 1,000 C in seconds and converts it into nontoxic calcium fluoride efficiently while also preserving essential soil properties.

“This is a substantial improvement over previous methods, which often suffer from high energy and water consumption, limited efficiency and often require the soil to be removed,” Tour said in the statement.

The funding will help Tour and the team scale the innovative REM process to treat large volumes of soil. The team also plans to use the process to perform urban mining of electronic and industrial waste and further develop a “flash-within-flash” heating technology to synthesize materials in bulk, according to Rice.

“This research advances scientific understanding but also provides practical solutions to critical environmental challenges, promising a cleaner, safer world,” Christopher Griggs, a senior research physical scientist at the ERDC, said in the statement.

Also this month, Tour and his research team published a report in Nature Communications detailing another innovative heating technique that can remove purified active materials from lithium-ion battery waste, which can lead to a cleaner production of electric vehicles, according to Rice.

“With the surge in battery use, particularly in EVs, the need for developing sustainable recycling methods is pressing,” Tour said in a statement.

Similar to the REM process, this technique known as flash Joule heating (FJH) heats waste to 2,500 Kelvin within seconds, which allows for efficient purification through magnetic separation.

This research was also supported by the U.S. Army Corps of Engineers, as well as the Air Force Office of Scientific Research and Rice Academy Fellowship.

Last year, a fellow Rice research team earned a grant related to soil in the energy transition. Mark Torres, an assistant professor of Earth, environmental and planetary sciences; and Evan Ramos, a postdoctoral fellow in the Torres lab; were given a three-year grant from the Department of Energy to investigate the processes that allow soil to store roughly three times as much carbon as organic matter compared to Earth's atmosphere.

By analyzing samples from the East River Watershed, the team aims to understand if "Earth’s natural mechanisms of sequestering carbon to combat climate change," Torres said in a statement.

———

This article originally ran on InnovationMap.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston launches Google-backed tool to address urban tree cover disparities

seeing green

The oldest national nonprofit conservation organization in the U.S American Forests has launched the Houston Tree Equity Score Analyzer, which was developed through local nonprofit Trees For Houston and local stakeholders from local government, environmental groups and the public health sector, and supported by Google’s philanthropic arm Google.org with a $450,000 grant.

To mark the launch, Trees For Houston and American Forest celebrated the partnership and worked to plant 50 trees at Shadydale Elementary in Northeast Houston on December 6.

“This marks a significant milestone for Houston's urban forestry efforts,” says Texas State Representative Senfronia Thompson at the December 6 event. “This effort goes beyond simply planting trees—it’s about creating the foundation for a greener, more inclusive future for our community. By uniting diverse resources and partners, including American Forests, Google.org and Trees For Houston, we’re showcasing a powerful dedication to enhancing the environmental well-being and quality of life in our urban areas.”

How the analyzer works is it provides auto-generated data on the impact of tree cover alongside demographic data, land use, poverty and other socioeconomic factors to assist with guide planning and investments to grow tree cover. The Houston Tree Equity Analyzer found that Shadydale Elementary has just 9 percent tree canopy coverage, which falls short of the 30 percent canopy goal for the area. The planting will increase the canopy by 6 percent according to a news release. According to American Forests, nearly 80 percent of urban neighborhoods in the United States have inadequate tree cover.

“The Tree Equity Score Analyzer enables communities to take a human-centered, data-driven approach to developing actionable tree planting and protection plans, ensuring they are focusing on areas that need them most, like Shadydale Elementary School,” said Vice President of GIS and Data Science at American Forests Chris David said in a news release.

American Forests is aiming to assist with at least 100 cities to make progress on Tree Equity by 2030. American Forests helped to unlock $1.5 billion, which was the nation’s largest federal investment in urban forestry in the Inflation Reduction Act of 2022.

“We look forward to working with our partners in Houston to continue to grow equitable tree cover in the community with data-driven approaches and action,” David says in a news release.

Photo by Thomas Koenig/Big Pineapple Productions

This Houston innovator's innovative corrosion detection tech is vital to the future of energy

now streaming

Houston-based Corrolytics approach is to help revolutionize and digitize microbial corrosion detection — both to improves efficiency and operational cost for industrial companies, but also to move the needle on a cleaner future for the energy industry.

"We are having an energy transition — that is a given. As we are bringing new energy, there will be growth of infrastructure to them. Every single path for the energy transition, corrosion will play a primary role as well," Anwar Sadek, co-founder and CEO of Corrolytics, says on the Houston Innovators Podcast.

The technology Sadek and his team have created is a tool to detect microbial corrosion — a major problem for industrial businesses, especially within the energy sector. Sadek describes the product as being similar to a testing hit a patient would use at home or in a clinic setting to decipher their current ailments.



Users of the Corrolytics test kit can input their pipeline sample in the field and receive results via Corrolytics software platform.

"This technology, most importantly, is noninvasive. It does not have to be installed into any pipelines or assets that the company currently has," Sadek explains. "To actually use it, you don't have to introduce new techniques or new processes in the current operations. It's a stand-alone, portable device."

Corrolytics hopes to work with new energies from the beginning to used the data they've collected to prevent corrosion in new facilities. However, the company's technology is already making an impact.

"Every year, there is about 1.2 gigaton of carbon footprint a year that is released into the environment that is associated with replacing corroded steel in general industries," Sadek says. "With Corrolytics, (industrial companies) have the ability to extend the life of their current infrastructure."

Despite having success in taking his technology from lab to commercialization, Sadek made the strategic decision to move his company, Corrolytics, from where it was founded in Ohio to Houston.

"Houston is the energy capital of the world. For the technology we are developing, it is the most strategic move for us to be in this ecosystem and in this city where all the energy companies are, where all the investors in the energy space are — and things are moving really fast in Houston in terms of energy transition and developing the current infrastructure," Sadek says.

And as big as a move as it was, it was worth it, Sadek says.

"It's been only a year that we've been here, but we've made the most developments, the most outreach to clients in this one last year."

Sadek says his move to Houston has already paid off, and he cites one of the company's big wins was at the 2024 Houston Innovation Awards, where Corrolytics won two awards.

———

This article originally ran on InnovationMap.