Tyler Lancaster, a Chicago-based investor with Energize Capital, shares his investment thesis and why Houston-based Amperon caught his eye. Photo courtesy of Energize Capital

One of the biggest challenges to the energy transition is finding the funds to fuel it. Tyler Lancaster, partner at Energize Capital, is playing a role in that.

Energize Capital, based in Chicago, is focused on disruptive software technology key to decarbonization. One of the firm's portfolio companies is Amperon, which raised $20 million last fall.

In an interview with EnergyCapital, Lancaster shares what he's focused on and why Amperon caught Energize Capital's attention.

EnergyCapital: Energize Capital has been investing in climate tech for the better part of a decade now. What types of companies are you looking for and how are these companies’ technologies affecting the greater energy transition?

Tyler Lancaster: We partner with best-in-class innovators to accelerate the sustainability transition. This means identifying climate technology companies at various stages of maturity — from early commercialization to approaching the public markets — that we can help scale and realize their full potential. We invest in software-first climate technology businesses, with a focus on asset-light digital solutions that can help scale sustainable innovation and enable the new energy economy. Our portfolio currently drives software applications across renewable energy, industrial operations, electrification & mobility, infrastructure resilience, and decarbonization. We primarily focus on proven, commercially available and economically viable energy transition solutions (solar, wind, batteries, heat pumps, etc.). These solutions suffer from challenges related to efficient deployment or operations, where enabling digital platforms can play a key role in optimizing costs.

EC: Amperon is one of Energize Capital's portfolio companies. What made the company a great investment opportunity for Energize Capital?

TL: Accelerating the energy transition will require critical forecasting tools like what Amperon provides. This is underscored by the escalating impact of extreme weather events, increasing penetration of variable energy resources, like wind and solar, on the supply side, and surging demand growth driven by flexible loads and rapid electrification. We believe the need for Amperon’s platform will only continue to grow, and their increased raise from Series A to Series B showed they are scaling smartly. We’ve also known Sean Kelly, Abe Stanway, and the entire Amperon team for a long time, and building strong relationships with founders is how we like to do business. Amperon has built a blue-chip customer base in the energy sector in a very capital efficient manner, which is more important than ever for startups operating in the current equity market environment.

EC: One of the energy transition’s biggest problems is sourcing and storing reliable and affordable energy. What have you observed are the biggest problems with Texas’ electricity grid and what types of new tech can help improve these issues?

TL: Today’s electricity grid and the demands we’re putting on it look very different than they ever have. Major changes in climate and extreme weather show how perilous and unreliable the power grids in this country are, particularly in regions like Texas that don’t have the right infrastructure to shield grids from unusual temperatures — just look at the damage done by 2021’s historic Winter Storm Uri. And consumer demand for electricity is increasing as electrification accelerates globally. The makeup of the grid itself is shifting from centralized power plants to distributed clean energy assets like solar arrays and wind turbines, which brings issues of intermittent electricity production and no traditional way to forecast that.

Tech solutions like Amperon are the only way to navigate the nuances of the energy transition. With global net-zero goals and impending Scope II accounting, Amperon’s expertise in granular data management further enables companies to build accurate, dynamic forecasting models with smart meter data and get more visibility into anticipated market shifts so they can optimize their energy use — all of which helps to create a more resilient and reliable power grid.

EC: You are also on the board of the company, which recently announced a collaboration with Microsoft’s tech. What doors does this open for Amperon?

TL: Partnering with Microsoft and offering its energy demand forecasting solution on the Azure platform enables Amperon to better serve more companies that are navigating the energy transition and a rapidly evolving grid. Many power sector companies are also undergoing cloud migrations with Microsoft Azure having high market share. This partnership will specifically accelerate Amperon’s reach with utility customers, who typically have slower sales cycles but can greatly benefit from improved accuracy in energy demand forecasting and adoption of AI technologies.

EC: As a non-Texas investor, how do you see Houston and Texas-based companies’ investability? Has it changed over the years?

TL: While most tech startups are concentrated on the coasts and in Europe, we see Texas emerging as a hub for energy and climate focused startups due to its vicinity to energy giants, which represent potential customers. Texas leads the country in renewable energy production and sits at the forefront of the transition. Energy companies based in this region are relying on technology innovation and software tools to modernize operations and meet the evolving demands of their customers.

———

This conversation has been edited for brevity and clarity.

A Houston investor is looking to target high-potential hardtech startups within the energy transition with his new venture studio. Photo via Getty Images

Houston investor launches energy transition venture studio to help elevate early-stage hardtech startups

money moves

The way Doug Lee looks at it, there are two areas within the energy transition attracting capital. With his new venture studio, he hopes to target an often overlooked area that's critical for driving forward net-zero goals.

Lee describes investment activity taking place in the digital and software world — early stage technology that's looking to make the industry smarter. But, on the other end of the spectrum, investment activity can be found on massive infrastructure projects.

While both areas need funding, Lee has started his new venture studio, Flathead Forge, to target early-stage hardtech technologies.

“We are really getting at the early stage companies that are trying to develop technologies at the intersection of legacy industries that we believe can become more sustainable and the energy transition — where we are going. It’s not an ‘if’ or ‘or’ — we believe these things intersect,” he tells EnergyCapital.

Specifically, Lee's expertise is within the water and industrial gas space. For around 15 years, he's made investments in this area, which he describes as crucial to the energy transition.

“Almost every energy transition technology that you can point to has some critical dependency on water or gas,” he says. “We believe that if we don’t solve for those things, the other projects won’t survive.”

Lee, and his brother, Dave, are evolving their family office to adopt a venture studio model. They also sold off Azoto Energy, a Canadian oilfield nitrogen cryogenic services business, in December.

“We ourselves are going through a transition like our energy is going through a transition,” he says. “We are transitioning into a single family office into a venture studio. By doing so, we want to focus all of our access and resources into this focus.”

At this point, Flathead Forge has seven portfolio companies and around 15 corporations they are working with to identify their needs and potential opportunities. Lee says he's gearing up to secure a $100 million fund.

Flathead also has 40 advisers and mentors, which Lee calls sherpas — a nod to the Flathead Valley region in Montana, which inspired the firm's name.

“We’re going to help you carry up, we’re going to tie ourselves to the same rope as you, and if you fall off the mountain, we’re falling off with you,” Lee says of his hands-on approach, which he says sets Flathead apart from other studios.

Another thing that's differentiating Flathead Forge from its competition — it's dedication to giving back.

“We’ve set aside a quarter of our carried interest for scholarships and grants,” Lee says.

The funds will go to scholarships for future engineers interested in the energy transition, as well as grants for researchers studying high-potential technologies.

“We’re putting our own money where our mouth is,” Lee says of his thesis for Flathead Forge.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston quantum simulator research reveals clues for solar energy conversion

energy flow

Rice University scientists have used a programmable quantum simulator to mimic how energy moves through a vibrating molecule.

The research, which was published in Nature Communications last month, lets the researchers watch and control the flow of energy in real time and sheds light on processes like photosynthesis and solar energy conversion, according to a news release from the university.

The team, led by Rice assistant professor of physics and astronomy Guido Pagano, modeled a two-site molecule with one part supplying energy (the donor) and the other receiving it (the acceptor).

Unlike in previous experiments, the Rice researchers were able to smoothly tune the system to model multiple types of vibrations and manipulate the energy states in a controlled setting. This allowed the team to explore different types of energy transfer within the same platform.

“By adjusting the interactions between the donor and acceptor, coupling to two types of vibrations and the character of those vibrations, we could see how each factor influenced the flow of energy,” Pagano said in the release.

The research showed that more vibrations sped up energy transfer and opened new paths for energy to move, sometimes making transfer more efficient even with energy loss. Additionally, when vibrations differed, efficient transfer happened over a wider range of donor–acceptor energy differences.

“The results show that vibrations and their environment are not simply background noise but can actively steer energy flow in unexpected ways,” Pagano added.

The team believes the findings could help with the design of organic solar cells, molecular wires and other devices that depend on efficient energy or charge transfer. They could also have an environmental impact by improving energy harvesting to reduce energy losses in electronics.

“These are the kinds of phenomena that physical chemists have theorized exist but could not easily isolate experimentally, especially in a programmable manner, until now,” Visal So, a Rice doctoral student and first author of the study, added in the release.

The study was supported by The Welch Foundation,the Office of Naval Research, the National Science Foundation CAREER Award, the Army Research Office and the Department of Energy.

The EPA is easing pollution rules — here’s how it’s affecting Texas

In the news

The first year of President Trump’s second term has seen an aggressive rollback of federal environmental protections, which advocacy groups fear will bring more pollution, higher health risks, and less information and power for Texas communities, especially in heavily industrial and urban areas.

Within Trump’s first 100 days in office, his new Environmental Protection Agency administrator, Lee Zeldin, announced a sweeping slate of 31 deregulatory actions. The list, which Zeldin called the agency’s “greatest day of deregulation,” targeted everything from soot standards and power plant pollution rules to the Endangerment Finding, the legal and scientific foundation that obligates the EPA to regulate climate-changing pollution under the Clean Air Act.

Since then, the agency froze research grants, shrank its workforce, and removed some references to climate change and environmental justice from its website — moves that environmental advocates say send a clear signal: the EPA’s new direction will come at the expense of public health.

Cyrus Reed, conservation director of the Lone Star Chapter of the Sierra Club, said Texas is one of the states that feels EPA policy changes directly because the state has shown little interest in stepping up its environmental enforcement as the federal government scales back.

“If we were a state that was open to doing our own regulations there’d be less impact from these rollbacks,” Reed said. “But we’re not.”

“Now we have an EPA that isn’t interested in enforcing its own rules,” he added.

Richard Richter, a spokesperson at the state’s environmental agency, Texas Commission on Environmental Quality, said in a statement that the agency takes protecting public health and natural resources seriously and acts consistently and quickly to enforce federal and state environmental laws when they’re violated.

Methane rules put on pause

A major EPA move centers on methane, a potent greenhouse gas that traps heat far more efficiently than carbon dioxide over the short term. It accounts for roughly 16% of global greenhouse gas emissions and is a major driver of climate change. In the U.S., the largest source of methane emissions is the energy sector, especially in Texas, the nation’s top oil and gas producer.

In 2024, the Biden administration finalized long-anticipated rules requiring oil and gas operators to sharply reduce methane emissions from wells, pipelines, and storage facilities. The rule, developed with industry input, targeted leaks, equipment failures, and routine flaring, the burning off of excess natural gas at the wellhead.

Under the rule, operators would have been required to monitor emissions, inspect sites with gas-imaging cameras for leaks, and phase out routine flaring. States are required to come up with a plan to implement the rule, but Texas has yet to do so. Under Trump’s EPA, that deadline has been extended until January 2027 — an 18-month postponement.

Texas doesn’t have a rule to capture escaping methane emissions from energy infrastructure. Richter, the TCEQ spokesperson, said the agency continues to work toward developing the state plan.

Adrian Shelley, Texas director of the watchdog group Public Citizen, said the rule represented a rare moment of alignment between environmentalists and major oil and gas producers.

“I think the fossil fuel industry generally understood that this was the direction the planet and their industry was moving,” he said. Shelley said uniform EPA rules provided regulatory certainty for changes operators saw as inevitable.

Reed, the Sierra Club conservation director, said the delay of methane rules means Texas still has no plan to reduce emissions, while neighboring New Mexico already has imposed its own state methane emission rules that require the industry to detect and repair methane leaks and ban routine venting and flaring.

These regulations have cut methane emissions in the New Mexico portion of the Permian Basin — the oil-rich area that covers West Texas and southeast New Mexico — to half that of Texas, according to a recent data analysis by the Environmental Defense Fund. That’s despite New Mexico doubling production since 2020.

A retreat from soot standards

Fine particulate matter or PM 2.5, one of six pollutants regulated under the Clean Air Act, has been called by researchers the deadliest form of air pollution.

In 2024, the EPA under President Biden strengthened air rules for particulate matter by lowering the annual limit from 12 to 9 micrograms per cubic meter. It was the first update since 2012 and one of the most ambitious pieces of Biden’s environmental agenda, driven by mounting evidence that particulate pollution is linked to premature death, heart disease, asthma, and other respiratory illnesses.

After the rule was issued, 24 Republican-led states, including Kentucky and West Virginia, sued to revert to the weaker standard. Texas filed a separate suit asking to block the rule’s recent expansion.

State agencies are responsible for enforcing the federal standards. The TCEQ is charged with creating a list of counties that exceed the federal standard and submitting those recommendations to Gov. Greg Abbott, who then finalizes the designations and submits them to the EPA.

Under the 9 microgram standard, parts of Texas, including Dallas, Harris (which includes Houston), Tarrant (Fort Worth), and Bowie (Texarkana) counties, were in the process of being designated nonattainment areas — which, when finalized, would trigger a legal requirement for the state to develop a plan to clean up the air.

That process stalled after Trump returned to office. Gov. Greg Abbott submitted his designations to EPA last February, but EPA has not yet acted on his designations, according to Richter, the TCEQ spokesperson.

In a court filing last year, the Trump EPA asked a federal appeals court to vacate the stricter standard, bypassing the traditional notice and comment administrative process.

For now, the rule technically remains in effect, but environmental advocates say the EPA’s retreat undermines enforcement of the rule and signals to polluters that it may be short-lived.

Shelley, with Public Citizen, believes the PM2.5 rule would have delivered the greatest health benefit of any EPA regulation affecting Texas, particularly through reductions in diesel pollution from trucks.

“I still hold out hope that it will come back,” he said.

Unraveling the climate framework

Beyond individual pollutants, the Trump EPA has moved to dismantle the federal architecture for addressing climate change.

Among the proposals is eliminating the Greenhouse Gas Reporting Program, which requires power plants, refineries, and oil and gas suppliers to report annual emissions. The proposal has drawn opposition from both environmental groups and industry, which relies on the data for planning and compliance.

Colin Leyden, Texas state director and energy lead at the nonprofit Environmental Defense Fund, said eliminating the program could hurt Texas industry. If methane emissions are no longer reported, then buyers and investors of natural gas, for example, won’t have an official way to measure how much methane pollution is associated with that gas, according to Leyden. That makes it harder to judge how “clean” or “climate-friendly” the product is, which international buyers are increasingly demanding.

“This isn’t just bad for the planet,” he said. “It makes the Texas industry less competitive.”

The administration also proposed last year rescinding the Endangerment Finding, issued in 2009, which obligates the EPA to regulate climate pollution. Most recently, the EPA said it will stop calculating how much money is saved in health care costs as a result of air pollution regulations that curb particulate matter 2.5 and ozone, a component of smog. Both can cause respiratory and health problems.

Leyden said tallying up the dollar value of lives saved when evaluating pollution rules is a foundational principle of the EPA since its creation.

“That really erodes the basic idea that (the EPA) protects health and safety and the environment,” he said.

___

This story was originally published by The Texas Tribune and distributed through a partnership with The Associated Press.

New report predicts major data center boom in Texas by 2028

data analysis

Data centers are proving to be a massive economic force in Texas.

For instance, a new report from clean energy company Bloom Energy predicts Texas will see a 142 percent increase in its market share for data centers from 2025 to 2028. That would be the highest increase of any state.

Bloom Energy expects Texas to exceed 40 gigawatts of data-center capacity by 2028, representing a nearly 30 percent share of the U.S. market. A typical AI data center consumes 1 to 2 gigawatts of energy.

“Data center and AI factory developers can’t afford delays,” Natalie Sunderland, Bloom Energy’s chief marketing officer, said in the report. “Our analysis and survey results show that they’re moving into power‑advantaged regions where capacity can be secured faster — and increasingly designing campuses to operate independently of the grid.”

“The surge in AI demand creates a clear opportunity for states that can adapt to support large-scale AI deployments at speed,” Sunderland adds.

Further evidence of the data center explosion in Texas comes from ConstructConnect, a provider of data and software for contractors and manufacturers. ConstructConnect reported that in the 12-month span through November 2025, data-center construction starts in Texas accounted for $11 billion in spending. At $12.5 billion, only Louisiana surpassed the Texas total.

Capital expenses for U.S. data centers were expected to surpass $425 billion last year, according to ratings agency S&P Global.

ConstructConnect also reports that Texas is among five states collectively grabbing 80 percent of potential data center construction starts. Currently, Texas hosts around 400 data centers, with close to 60 of them in the Houston market.

A large pool of data-center construction spending in Texas is flowing from Google, which announced in November that it would earmark $40 billion for new AI data centers in the state.

“Texas leads in AI and tech innovation,” Gov. Greg Abbott proclaimed when the Google investment was unveiled.

Other studies and reports lay out just how much data centers are influencing economic growth in the Lone Star State:

  • A study by Texas Royalty Brokers indicates Texas leads the U.S. with 17 clusters of AI data centers. The study measured the density of AI data centers by counting the number of graphics processing units (GPUs) installed in those clusters. GPUs are specialized chips built to run AI models and perform complex calculations.
  • Citing data from construction consulting company FMI, The Wall Street Journal reported that spending on construction of data centers is expected to rise 23 percent in 2026 compared with last year. Much of that construction spending will happen in Texas. In the 12 months through November 2025, the average data center cost $597 million, according to ConstructConnect.
  • Data published in 2025 by commercial real estate services company Cushman & Wakefield shows three Texas markets — Austin, Dallas and San Antonio — boast the lowest construction costs for data centers among the 19 U.S. markets that were analyzed. The mid-range of costs in that trio of markets is roughly $10.65 million per megawatt. Houston isn’t included in the data.

Although Houston isn’t cited in the Cushman & Wakefield data, it nonetheless is playing a major role in the data-center boom. Houston-area energy giants Chevron and ExxonMobil are chasing opportunities to supply natural gas as a power source for data centers, for example.

“As Houston rapidly evolves into a hub for AI, cloud computing, and data infrastructure, the city is experiencing a surge in data-center investments driven by its unique position at the intersection of energy, technology, and innovation,” says the Greater Houston Partnership.