Want to work for one of the top energy startups in Houston? These ones are hiring. Photo via Getty Images

About a third of this year's startup finalists for the Houston Innovation Awards are hiring — from contract positions all the way up to senior-level roles. And seven of these companies are advancing innovative energy transition technologies.

The finalists, announced last week, range from the medical to energy to AI-related startups and will be celebrated next month on Thursday, November 14, at the Houston Innovation Awards at TMC Helix Park. Over 50 finalists will be recognized for their achievements across 13 categories, which includes the 2024 Trailblazer Legacy Awards that were announced earlier this month.

Click here to secure your tickets to see which growing startups win.

When submitting their applications for the awards, every startup was asked if it was hiring. Let's take a look at what companies among the energy transition finalists you could land a job at.

Double-digit growth

Houston energy tech company Enovate Ai (previously known as Enovate Upstream) reported that it is hiring 10-plus positions. The company, with 35 current employees, helps automate business and operational processes for decarbonization and energy optimization. Its CEO and founder, Camilo Mejia, sat down for an interview with InnovationMap in 2020. Click here to read the Q&A.

Square Robot is hiring about 10 new Houston employees and 15 total between Houston and other markets, according to its application. The advanced robotics company was founded in Boston in 2016 and opened its Houston office in August 2019. It develops submersible robots for the energy industry, specifically for storage tank inspections and eliminating the need for humans to enter dangerous and toxic environments. Last year it reported to be hiring 10 to 30 employees as well, ahead of the 2023 Houston Innovators Award. It currently has 25 Houston employees and about 50 nationally.

InnoVent Renewables LLC is also hiring 15 new employees to be based in Mexico. The company launched last year with its proprietary continuous pyrolysis technology that can convert waste tires, plastics, and biomass into fuels and chemicals. The company scaled up in 2022 and has operations in Pune, India, and Monterrey, Mexico, with plans for aggressive growth across North America and Latin America. It has 20 employees in Mexico and one in Houston currently.

Senior roles and steady growth

Geothermal energy startup Sage Geosystems reported that it is looking to fill two senior roles in the company. It also said it anticipates further staff growth after its first commercial energy storage facility is commissioned at the end of the year in the San Antonio metro area. The company also recently expanded its partnership with the United States Department of Defense's Defense Innovation Unit and announced this month that it was selected to conduct geothermal project development initiatives at Naval Air Station in Corpus Christi. It has 12 full-time employees, according to its application.

Meanwhile, Syzygy Plasmonics is hiring four positions to add to its team of 120. The company was named to Fast Company's energy innovation list earlier this year.

Future roles

Other finalists reported that they are currently not hiring, but had plans to in the near future.

NanoTech Materials Inc., which recently moved to a new facility, is not currently. Hiring but said it plans with new funding during its series B.

Renewable energy startup CLS Wind is not hiring at this time but reported that it plans to when the company closes funding in late 2024.

———

A version of this article originally ran on InnovationMap.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Wind and solar supplied over a third of ERCOT power, report shows

power report

Since 2023, wind and solar power have been the fastest-growing sources of electricity for the Electric Reliability Council of Texas (ERCOT) and increasingly are meeting stepped-up demand, according to a new report from the U.S. Energy Information Administration (EIA).

The report says utility-scale solar generated 50 percent more electricity for ERCOT in the first nine months this year compared with the same period in 2024. Meanwhile, electricity generated by wind power rose 4 percent in the first nine months of this year versus the same period in 2024.

Together, wind and solar supplied 36 percent of ERCOT’s electricity in the first nine months of 2025.

Heavier reliance on wind and solar power comes amid greater demand for ERCOT electricity. In the first nine months of 2025, ERCOT recorded the fastest growth in electricity demand (5 percent) among U.S. power grids compared with the same period last year, according to the report.

“ERCOT’s electricity demand is forecast to grow faster than that of any other grid operator in the United States through at least 2026,” the report says.

EIA forecasts demand for ERCOT electricity will climb 14 percent in the first nine months of 2026 compared with the same period this year. This anticipated jump coincides with a number of large data centers and cryptocurrency mining facilities coming online next year.

The ERCOT grid covers about 90 percent of Texas’ electrical load.

Micro-nuclear reactor to launch next year at Texas A&M innovation campus

nuclear pilot

The Texas A&M University System and Last Energy plan to launch a micro-nuclear reactor pilot project next summer at the Texas A&M-RELLIS technology and innovation campus in Bryan.

Washington, D.C.-based Last Energy will build a 5-megawatt reactor that’s a scaled-down version of its 20-megawatt reactor. The micro-reactor initially will aim to demonstrate safety and stability, and test the ability to generate electricity for the grid.

The U.S. Department of Energy (DOE) fast-tracked the project under its New Reactor Pilot Program. The project will mark Last Energy’s first installation of a nuclear reactor in the U.S.

Private funds are paying for the project, which Robert Albritton, chairman of the Texas A&M system’s board of regents, said is “an example of what’s possible when we try to meet the needs of the state and tap into the latest technologies.”

Glenn Hegar, chancellor of the Texas A&M system, said the 5-megawatt reactor is the kind of project the system had in mind when it built the 2,400-acre Texas A&M-RELLIS campus.

The project is “bold, it’s forward-looking, and it brings together private innovation and public research to solve today’s energy challenges,” Hegar said.

As it gears up to build the reactor, Last Energy has secured a land lease at Texas A&M-RELLIS, obtained uranium fuel, and signed an agreement with DOE. Founder and CEO Bret Kugelmass said the project will usher in “the next atomic era.”

In February, John Sharp, chancellor of Texas A&M’s flagship campus, said the university had offered land at Texas A&M-RELLIS to four companies to build small modular nuclear reactors. Power generated by reactors at Texas A&M-RELLIS may someday be supplied to the Electric Reliability Council of Texas (ERCOT) grid.

Also in February, Last Energy announced plans to develop 30 micro-nuclear reactors at a 200-acre site about halfway between Lubbock and Fort Worth.

Rice University partners with Australian co. to boost mineral processing, battery innovation

critical mineral partnership

Rice University and Australian mineral exploration company Locksley Resources have joined together in a research partnership to accelerate the development of antimony processing in the U.S. Antimony is a critical mineral used for defense systems, electronics and battery storage.

Rice and Locksley will work together to develop scalable methods for extracting and utilizing antimony. Currently, the U.S. relies on imports for nearly all refined antimony, according to Rice.

Locksley will fund the research and provide antimony-rich feedstocks and rare earth elements from a project in the Mojave Desert. The research will explore less invasive hydrometallurgical techniques for antimony extraction and explore antimony-based materials for use in batteries and other energy storage applications.

“This strategic collaboration with Rice marks a pivotal step in executing Locksley’s U.S. strategy,” Nathan Lude, chairman of Locksley Resources, said in a news release. “By fast-tracking our research program, we are helping rebuild downstream capacity through materials innovation that the country urgently requires.”

Pulickel Ajayan, the Benjamin M. and Mary Greenwood Anderson Professor of Materials Science and Nanoengineering at Rice, is the principal investigator of the project.

“Developing scalable, domestic pathways for antimony processing is not only a scientific and engineering challenge but also a national strategic priority,” Ajayan said in the news release. “By combining Rice’s expertise in advanced materials with Locksley’s resources, we can address a critical supply chain gap and build collaborations that strengthen U.S. energy resilience.”

The Rice Advanced Materials Institute (RAMI) will play a major role in supporting the advancement of technology and energy-storage applications.

“This partnership aligns with our mission to lead in materials innovations that address national priorities,” Lane Martin, director of RAMI, said in a news release. “By working with Locksley, we are helping to build a robust domestic supply chain for critical materials and support the advancement of next-generation energy technologies.”