A new study from the University of Texas at Austin shows that new hydrogen production facilities could account for 2 percent to nearly 7 percent of the state's water demand by 2050. Photo via Getty Images.

Just as the data center industry thrives on electricity, the hydrogen industry thrives on water.

A new study from researchers at the University of Texas at Austin found that by 2050, new hydrogen production facilities could account for 2 percent to nearly 7 percent of water demand in the state. The impact could be especially dramatic along the Gulf Coast, where most of the state’s hydrogen production facilities are already built or are being planned.

The research was published in the journal Sustainability.

The study reported that "most existing and proposed hydrogen production infrastructures are within projected water-strained cities and counties, such as Houston in Harris County and Corpus Christi in Nueces County."

Compared with municipal water supplies or irrigation systems, the hydrogen industry’s demand for water is comparatively small, the study’s lead author, Ning Lin, an energy economist at UT’s Bureau of Economic Geology, said in a news release. But hydrogen-fueled demand could strain communities that already are grappling with current and future water shortages.

“Where you put a project can make a huge difference locally,” Lin says. “With multiple hydrogen facilities planned in water-stressed Gulf Coast counties, this study highlights the urgent need for integrated water and energy planning and provides a solid foundation to help policymakers, industry, and communities make informed decisions about hydrogen and water management.”

To forecast water demand, Lin and her colleagues crunched data from a 2024 National Petroleum Council study that estimated the regional hydrogen demand from 2030 to 2050 based on two energy policy scenarios.

As part of the study, researchers reviewed water use and water quality for various hydrogen production methods that affect whether water remaining from production can be recycled.

“In order to plan for water needs, somebody has to figure out what those future demands might look like, and this paper puts some numbers to (it) that, I think, will be very helpful,” Robert Mace, executive director of the Meadows Center for Water and the Environment at Texas State University, who was not part of the study, added in the release.

Scott Nyquist debates both sides of the hydrogen argument in this week’s ECHTX Voices of Energy guest column. Photo courtesy of Aramco.

Will 2023 be hydrogen’s year?

GUEST COLUMN

Yes and no.

Yes, because there is real money, and action, behind it.

Globally, there are 600 projects on the books to build electrolyzers, which separate the oxygen and hydrogen in water, and are critical to creating low-emissions “green hydrogen.” That investment could drive down the cost of low-emissions hydrogen, making it cost competitive with conventional fuels—a major obstacle to its development so far.

In addition, oil companies are interested, too. The industry already uses hydrogen for refining; many see hydrogen as supplemental to their existing operations and perhaps, eventually, supplanting them. In the meantime, it helps them to decarbonize their refining and petrochemical operations, which most of the majors have committed to doing.

Indeed, hydrocarbon-based companies and economies could have a big opportunity in “blue hydrogen,” which uses fossil fuels for production, but then captures and stores emissions. (“Green hydrogen” uses renewables; because it is expensive to produce, it is more distant than blue. “Gray hydrogen” uses fossil fuels, without carbon capture; this accounts for most current production and use.) Oil and gas companies have a head start on related infrastructure, such as pipelines and carbon capture, and also see new business opportunities, such as low-carbon ammonia.

Houston, for example, which likes to call itself the "energy capital of the world,” is going big on hydrogen. The region is well suited to this. It has an extensive pipeline infrastructure, an excellent port system, a pro-business culture, and experience. The Greater Houston Partnership and McKinsey—both of whom I am associated with—estimate that demand for hydrogen will grow 6 to 8 percent a year from 2030 to 2050. No wonder Houston wants a piece of that action.

There are promising, near-term applications for hydrogen, such as ammonia, cement, and steel production, shipping, long-term energy storage, long-haul trucking, and aviation. These bits and pieces add up: steel alone accounts for about 8 percent of global carbon-dioxide emissions. Late last year, Airbus announced it is developing a hydrogen-powered fuel cell engine as part of its effort to build zero-emission aircraft. And Cummins, a US-based engine company, is investing serious money in hydrogen for trains and commercial and industrial vehicles, where batteries are less effective; it already has more than 500 electrolyzers at work.

Then there is recent US legislation. The Infrastructure, Investment and Jobs Act (IIJA) of 2021 allocated $9.5 billion funding for hydrogen. Much more important, though, was last year’s Inflation Reduction Act, which contains generous tax credits to promote hydrogen production. The idea is to narrow the price gap between clean hydrogen and other, more emissions-intensive technologies; in effect, the law seeks to fundamentally change the economics of hydrogen and could be a true game-changer.

This is not without controversy: some Europeans think this money constitutes subsidies that are not allowed under trade rules. For its part, Europe has the hydrogen bug, too. Its REPowerEU plan is based on the idea of “hydrogen-ready infrastructure,” so that natural gas projects can be converted to hydrogen when the technology and economics make sense.

So there is a lot of momentum behind hydrogen, bolstered by the ambitious goals agreed to at the most recent climate conference in Egypt. McKinsey estimates that hydrogen demand could reach 660 million tons by 2050, which could abate 20 percent of total emissions. Total planned production for lower-emission green and blue hydrogen through 2030 has reached more than 26 million metric tons annually—quadruple that of 2020.

No, because major issues have not been figured out.

The plans in the works, while ambitious, are murky. A European official, asked about the REPowerEU strategy, admitted that “it’s not clear how it will work.” The same can be said of the United States. The hydrogen value chain, particularly for green hydrogen, requires a lot of electricity, and that calls for flexible grids and much greater capacity. For the United States to reach its climate goals, the grid needs to grow an estimated 60 percent by 2030.That is not easy: just try siting new transmission lines and watch the NIMBY monsters emerge.

Permitting can be a nightmare, often requiring separate approvals from local, state, interstate, and federal authorities, and from different authorities for each (air, land, water, endangered species, and on and on); money does not solve this. Even a state like Texas, which isn’t allergic to fossil fuels and has a relatively light regulatory touch, can get stuck in permitting limbo. Bill Gates recently noted that “over 1,000 gigawatts worth of potential clean energy projects [in the United States] are waiting for approval—about the current size of the entire U.S. grid—and the primary reason for the bottleneck is the lack of transmission.”

Then there is the matter of moving hydrogen from production site to market. Pipeline networks are not yet in place and shifting natural gas pipelines to hydrogen is a long way off. Liquifying hydrogen and transporting is expensive. In general, because hydrogen is still a new industry, it faces “chicken or egg” problems that are typical of the difficulties big innovations face, such as connecting hydrogen buyers to hydrogen producers and connecting carbon emitters to places to store the carbon dioxide. These challenges add to the complexity of getting projects financed.

Finally, there is money. McKinsey estimates that getting on track to that 600 million tons would require investment of $950 billion by 2030; so far, $240 billion has been announced.

Where I stand: in the middle.

I believe in hydrogen’s potential. More than 3 years ago, I wrote about hydrogen, arguing that while there had been real progress, “many things need to happen, in terms of policy, finance, and infrastructure, before it becomes even a medium-sized deal.” Now, some of those things are happening.

So, I guess I land somewhere in the middle. I think 2023 will see real progress, in decarbonizing refining and petrochemicals operations and producing ammonia, specifically. I am also optimistic that a number of low-emissions electrolysis projects will move ahead. And while such advances might seem less than transformative, they are critical: hydrogen, whether blue or green, needs to prove itself, and 2023 could be the year it does.

Because I take hydrogen’s potential seriously, though, I also see the barriers. If it is to become the big deal its supporters believe it could be, that requires big money, strong engineering and construction project management, sustained commitment, and community support. It’s easy to proclaim the wonders of the hydrogen economy; it’s much more difficult to devise sensible business models, standardized contracts, consistent incentives, and a regulatory system that doesn’t drive producers crazy. But all this matters—a lot.

My conclusion: there will be significant steps forward in 2023—but take-off is still years away.

------

Scott Nyquist is a senior advisor at McKinsey & Company and vice chairman, Houston Energy Transition Initiative of the Greater Houston Partnership. The views expressed herein are Nyquist's own and not those of McKinsey & Company or of the Greater Houston Partnership. This article originally ran on LinkedIn.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston biotech company continues to expand in Brazil with new research partner

global expansion

Houston biotech company Cemvita has announced a strategic collaboration with Brazilian sustainable research institution REMA.

The move aims to promote Cemvita’s platform for evaluating and testing carbon waste streams as feedstocks for producing sustainable oil, according to the company.

Cemvita utilizes synthetic biology to transform carbon emissions into valuable bio-based chemicals. REMA professors Marcio Schneider and Admir Giachini have previously worked with Cemvita’s CTO, Marcio Busi da Silva, for approximately 20 years.

“This long-standing partnership reflects not only our strong professional ties, but also our shared commitment to advancing science and technology for a more sustainable future," Busi da Silva said in a news release.

REMA’s center is based in Florianópolis and is affiliated with the Federal University of Santa Catarina, which develops cost-effective environmental and technological solutions in automation, chemical engineering, biotech, environmental engineering and agronomy.

“Partnering with REMA in Florianópolis represents a significant step forward in our mission to transform carbon waste into valuable resources,” Tara Karimi, chief science and sustainability officer of Cemvita, said in a news release. “Together, we will enhance our platform’s capabilities, leveraging REMA’s expertise to evaluate and utilize diverse waste streams for sustainable oil production, further advancing the circular bioeconomy in Brazil and beyond.”

Cemvita recently expanded to Brazil to capitalize on the country’s progressive regulatory framework, which includes Brazil’s Fuel of the Future Law. The expansion also aimed to coincide with the 2025 COP30, the UN’s climate change conference, which will be hosted in Brazil in November.

Cemvita became capable of generating 500 barrels per day of sustainable oil from carbon waste at its first commercial plant in 2024, and as a result, Cemvita quadrupled output at its Houston plant. The company originally planned to reach this milestone in 2029.

Also in 2025, Cemvita announced a partnership with Brazil-based Be8 that focused on converting biodiesel byproduct glycerin into low-carbon feedstock to help support the decarbonization of the aviation sector. Cemvita agreed to a 20-year contract that specified it would supply up to 50 million gallons of SAF annually to United Airlines in 2023.

Houston earns No. 3 spot among cities with most Fortune 500 headquarters

biggest companies

Houston maintained its No. 3 status this year among U.S. metro areas with the most Fortune 500 headquarters. Fortune magazine tallied 26 Fortune 500 headquarters in the Houston area, behind only the New York City area (62) and the Chicago area (30).

Last year, 23 Houston-area companies landed on the Fortune 500 list. Fortune bases the list on revenue that a public or private company earns during its 2024 budget year.

On the Fortune 500 list for 2025, Spring-based ExxonMobil remained the highest-ranked company based in the Houston area as well as in Texas, sitting at No. 8 nationally. That’s down one spot from its No. 7 perch on the 2024 list. During its 2024 budget year, ExxonMobil reported revenue of $349.6 billion, up from $344.6 billion the previous year.

Here are the rankings and 2024 revenue for the 25 other Houston-area companies that made this year’s Fortune 500:

  • No. 16 Chevron, $202.8 billion
  • No. 28 Phillips 66, $145.5 billion
  • No. 56 Sysco, $78.8 billion
  • No. 75 Conoco Phillips, $56.9 million
  • No. 78 Enterprise Products Partners, $56.2 billion
  • No. 92 Plains GP Holdings, $50 billion
  • No. 143 Hewlett-Packard Enterprise, $30.1 billion
  • No. 153 NRG Energy, $28.1 billion
  • No. 155 Baker Hughes, $27.8 billion
  • No. 159 Occidental Petroleum, $26.9 billion
  • No. 183 EOG Resources, $23.7 billion
  • No. 184 Quanta Services, $23.7 billion
  • No. 194 Halliburton, $23 billion
  • No. 197 Waste Management, $22.1 billion
  • No. 214 Group 1 Automotive, $19.9 billion
  • No. 224 Corebridge Financial, $18.8 billion
  • No. 256 Targa Resources, $16.4 billion
  • No. 275 Cheniere Energy, $15.7 billion
  • No. 289 Kinder Morgan, $15.1 billion
  • No. 345 Westlake Corp., $12.1 billion
  • No. 422 APA, $9.7 billion
  • No. 443 NOV, $8.9 billion
  • No. 450 CenterPoint Energy, $8.6 billion
  • No. 474 Par Pacific Holdings, $8 billion
  • No. 480 KBR Inc., $7.7 billion

Nationally, the top five Fortune 500 companies are:

  • Walmart
  • Amazon
  • UnitedHealth Group
  • Apple
  • CVS Health

“The Fortune 500 is a literal roadmap to the rise and fall of markets, a reliable playbook of the world's most important regions, services, and products, and an indispensable roster of those companies' dynamic leaders,” Anastasia Nyrkovskaya, CEO of Fortune Media, said in a news release.

Among the states, Texas ranks second for the number of Fortune 500 headquarters (54), preceded by California (58) and followed by New York (53).

3 Houston energy companies rank among most innovative startups in Texas

report card

Three Houston companies claimed spots on LexisNexis's 10 Most Innovative Startups in Texas report, with two working in the geothermal energy space.

Sage Geosystems claimed the No. 3 spot on the list, and Fervo Energy followed closely behind at No. 5. Fintech unicorn HighRadius rounded out the list of Houston companies at No. 8.

LexisNexis Intellectual Property Solutions compiled the report. It was based on each company's Patent Asset Index, a proprietary metric from LexisNexis that identifies the strength and value of each company’s patent assets based on factors such as patent quality, geographic scope and size of the portfolio.

Houston tied with Austin, each with three companies represented on the list. Caris Life Sciences, a biotechnology company based in Dallas, claimed the top spot with a Patent Asset Index more than 5 times that of its next competitor, Apptronik, an Austin-based AI-powered humanoid robotics company.

“Texas has always been fertile ground for bold entrepreneurs, and these innovative startups carry that tradition forward with strong businesses based on outstanding patent assets,” Marco Richter, senior director of IP analytics and strategy for LexisNexis Intellectual Property Solutions, said in a release. “These companies have proven their innovation by creating the most valuable patent portfolios in a state that’s known for game-changing inventions and cutting-edge technologies.We are pleased to recognize Texas’ most innovative startups for turning their ideas into patented innovations and look forward to watching them scale, disrupt, and thrive on the foundation they’ve laid today.”

This year's list reflects a range in location and industry. Here's the full list of LexisNexis' 10 Most Innovative Startups in Texas, ranked by patent portfolios.

  1. Caris (Dallas)
  2. Apptronik (Austin)
  3. Sage Geosystems (Houston)
  4. HiddenLayer (Austin)
  5. Fervo Energy (Houston)
  6. Plus One Robotics (San Antonio)
  7. Diligent Robotics (Austin)
  8. HighRadius (Houston)
  9. LTK (Dallas)
  10. Eagle Eye Networks (Austin)

Sage Geosystems has partnered on major geothermal projects with the United States Department of Defense's Defense Innovation Unit, the U.S. Air Force and Meta Platforms. Sage's 3-megawatt commercial EarthStore geothermal energy storage facility in Christine, Texas, was expected to be completed by the end of last year.

Fervo Energy fully contracted its flagship 500 MW geothermal development, Cape Station, this spring. Cape Station is currently one of the world’s largest enhanced geothermal systems (EGS) developments, and the station will begin to deliver electricity to the grid in 2026. The company was recently named North American Company of the Year by research and consulting firm Cleantech Group and came in at No. 6 on Time magazine and Statista’s list of America’s Top GreenTech Companies of 2025. It's now considered a unicorn, meaning its valuation as a private company has surpassed $1 billion.

Meanwhile, HighRadius announced earlier this year that it plans to release a fully autonomous finance platform for the "office of the CFO" by 2027. The company reached unicorn status in 2020.