HCC's Transportation Center of Excellence Electric Vehicle training program received a donation of $200,000 from BP America. Photo courtesy of HCC

BP America agreed to donate a large sum to Houston Community College in order to support the future of the city's electric vehicle workforce.

During the Board of Trustees meeting, HCC's Transportation Center of Excellence Electric Vehicle training program received a donation of $200,000 from BP America. The program plans to use the funds for a safety and fundamentals course for more than 300 City of Houston’s and Harris County fleet department employees, which equips technicians to repair and maintain EVs.

“We are delighted to be at the forefront of this important education to equip Houstonians with the knowledge and skills to maintain electric vehicles,” Chancellor Margaret Ford Fisher says in a news release. “This generous donation is a win for the partners involved and for helping to ensure a sustainable future.”

The Transportation Center of Excellence's EV training program has already trained more than 100 fleet mechanics and automotive technicians. It began on April 1 at the HCC North Forest Campus Automotive Training Center. With state-of-the-art equipment for hands-on training and classroom instruction,instructors show technicians potential risks associated with the high-voltage elements of EVs.

"We are proud to support the HCC Transportation Center of Excellence - Electric Vehicle training program," Mark Crawford, senior vice president at BP America adds in the release. "This partnership aligns with BP's commitment to sustainable livelihoods and advancing the energy transition."

Houston Community College's new program is training the future renewables workforce. Photo courtesy of HCC

Houston college system adds solar installation program for student-led action on renewables

renewable workforce development

Houston college students students are helping to address the ever-developing needs for renewable energy with the college’s latest solar installation program.

Houston Community College's Solar Energy Technology Photovoltaic and Thermal certificate programs will require students to complete six classes that amount to 18 college credit hours.

The new initiative will provide students with a Level I certificate through HCC’s Electrical Technology program at the HCC Architectural Design and Construction Center of Excellence. Afterwards, they can test to earn industry credentials like the North American Board of Certified Energy Providers photovoltaic associate certification. Students can also study solar systems design, solar inspection, solar sales, or explore engineering degrees post-HCC.

“This board certification is a powerful endorsement of our solar certificate and our professionalism,” Kris Asper, dean of the Center of Excellence, says in a news release. “We are excited that our certificate has been thoroughly reviewed and now has this important distinction. It means we are teaching the best to our solar PV students.”

The demand for solar photovoltaic installers is expected to increase almost 30 percent by 2031 according to the Bureau of Labor Statistics.

“The need within the solar energy sector is growing exponentially,” said HCC Central College President Dr. Muddassir Siddiqi in a news release. “Community colleges like HCC play a crucial part in opening up this sector to new workers, including students who have been historically underserved by our national energy policies.”

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

1PointFive secures new buyer for Texas CO2 removal project​

seeing green

Houston’s Occidental Petroleum Corp., or Oxy, and its subsidiary 1PointFive have secured another carbon removal credit deal for its $1.3 billion direct air capture (DAC) project, Stratos.

California-based Palo Alto Networks has agreed to purchase 10,000 tons of carbon dioxide removal (CDR) credits over five years from the project, according to a news release.

The company joins others like Microsoft, Amazon, AT&T, Airbus, the Houston Astros and the Houston Texans that have agreed to buy CDR credits from 1Point5.

"Collaborating with 1PointFive in this carbon removal credit agreement highlights our proactive approach toward exploring innovative solutions for a greener future,” BJ Jenkins, president of Palo Alto Networks, said in the release.

The Texas-based Stratos project is slated to come online this year near Odessa. It's being developed through a joint venture with investment manager BlackRock and is designed to capture up to 500,000 metric tons of CO2 per year. The U.S Environmental Protection Agency recently approved Class VI permits for the project.

DAC technology pulls CO2 from the air at any location, not just where carbon dioxide is emitted. Under the agreement with Palo Alto Networks and others, the carbon dioxide that underlies the credits will be stored in a below-the-surface saline aquifer and won’t be used to produce oil or gas.

“We look forward to collaborating with Palo Alto Networks and using Direct Air Capture to help advance their sustainability strategy,” Michael Avery, president and general manager of 1PointFive, said in the release. “This agreement continues to build momentum for high-integrity carbon removal while furthering DAC technology to support energy development in the United States.”

Chevron gets green light on $53 billion Hess acquisition

Mega Deal

Chevron has scored a critical ruling in Paris that has given it the go-ahead for a $53 billion acquisition of Hess and access to one of the biggest oil finds of the decade.

Chevron said Friday that it completed its acquisition of Hess shortly after the ruling from the International Chamber of Commerce in Paris. Exxon had challenged Chevron’s bid for Hess, one of three companies with access to the massive Stabroek Block oil field off the coast of Guyana.

“We disagree with the ICC panel’s interpretation but respect the arbitration and dispute resolution process,” Exxon Mobil said in a statement on Friday.

Guyana is a country of 791,000 people that is poised to become the world’s fourth-largest offshore oil producer, placing it ahead of Qatar, the United States, Mexico and Norway. It has become a major producer in recent years.

Oil giants Exxon Mobil, China’s CNOOC, and Hess squared off in a heated competition for highly lucrative oil fields in northern South America.

With Chevron getting the green light on Friday, it is now one of the major players in the Stabroek.

“We are proud of everyone at Hess for building one of the industry’s best growth portfolios including Guyana, the world’s largest oil discovery in the last 10 years, and the Bakken shale, where we are a leading oil and gas producer,” former Hess CEO John Hess said in a statement. “The strategic combination of Chevron and Hess creates a premier energy company positioned for the future.”

Chevron also said that on Thursday the Federal Trade Commission lifted its earlier restriction, clearing the way for John Hess to join its board of directors, subject to board approval.

Chevron announced its deal for Hess in October 2023, less than two weeks after Exxon Mobil said that it would acquire Pioneer Natural Resources for about $60 billion.

Chevron said at the time that the acquisition of Hess would add a major oil field in Guyana as well as shale properties in the Bakken Formation in North Dakota.

“Given the significant value we’ve created in the development of the Guyana resource, we believed we had a clear duty to our investors to consider our preemption rights to protect the value we created through our innovation and hard work at a time when no one knew just how successful this venture would become,” Exxon Mobil said Friday. “We welcome Chevron to the venture and look forward to continued industry-leading performance and value creation in Guyana for all parties involved.”

Chevron's stock rose more than 3% before the market open, while shares of Hess surged more than 7%. Exxon's stock climbed slightly.

Houston researchers develop strong biomaterial that could replace plastic

plastic problem

Collaborators from two Houston universities are leading the way in engineering a biomaterial into a scalable, multifunctional material that could potentially replace plastic.

The research was led by Muhammad Maksud Rahman, an assistant professor of mechanical and aerospace engineering at the University of Houston and an adjunct assistant professor of materials science and nanoengineering at Rice University. The team shared its findings in a study in the journal Nature Communications earlier this month. M.A.S.R. Saadi, a doctoral student in material science and nanoengineering at Rice, served as the first author.

The study introduced a biosynthesis technique that aligns bacterial cellulose fibers in real-time, which resulted in robust biopolymer sheets with “exceptional mechanical properties,” according to the researchers.

Biomaterials typically have weaker mechanical properties than their synthetic counterparts. However, the team was able to develop sheets of material with similar strengths to some metals and glasses. And still, the material was foldable and fully biodegradable.

To achieve this, the team developed a rotational bioreactor and utilized fluid motion to guide the bacteria fibers into a consistent alignment, rather than allowing them to align randomly, as they would in nature.

The process also allowed the team to easily integrate nanoscale additives—like graphene, carbon nanotubes and boron nitride—making the sheets stronger and improving the thermal properties.

“This dynamic biosynthesis approach enables the creation of stronger materials with greater functionality,” Saadi said in a release. “The method allows for the easy integration of various nanoscale additives directly into the bacterial cellulose, making it possible to customize material properties for specific applications.”

Ultimately, the scientists at UH and Rice hope this discovery could be used for the “next disposable water bottle,” which would be made by biodegradable biopolymers in bacterial cellulose, an abundant resource on Earth.

Additionally, the team sees applications for the materials in the packaging, breathable textiles, electronics, food and energy sectors.

“We envision these strong, multifunctional and eco-friendly bacterial cellulose sheets becoming ubiquitous, replacing plastics in various industries and helping mitigate environmental damage,” Rahman said the release.