At the GHP's Future of Global Energy event, panelists discussed the opportunities for scale in Houston. Photo by Natalie Harms/EnergyCapital

Time is of the essence when it comes to scaling energy transition businesses in Houston — at least that's what a group of panelists agreed on at a recent event from the Greater Houston Partnership.

The GHP's Future of Global Energy event, which took place on October 9, featured a panel entitled, "Epicenter of Energy Innovation for Scale" and was moderated by Barbara Burger, former president of Chevron Technology Ventures and current startup adviser and mentor. Joining Burger was Kristina Lund, president of Pattern Energy; Brooke Vandygriff, COO of HIF Global: and Bud Vos, CEO of MetOx International. All three companies have and plan to continue scaling in Houston.

The conversation covered some of the unique achievements each of the panelists' companies have reached recently, including HIF Global's millions raised to create e-fuels, MetOx's $25 million series B extension, and Pattern Energy's Southern Spirit project scoring $360 million from the Department of Energy to connect Texas's ERCOT to other states.

After covering the momentum each company has right now, Burger asked each of the panelists why Houston makes sense as a place for scaling their energy transition business.

"The U.S. has a great regulatory environment, ERCOT specifically. Texas is in the business of permitting projects," Vandygriff says. "If you take the right steps, you can get your permits. They are very responsive to attracting and recruiting businesses here."

Also attractive is Houston's existing energy workforce. Even when it comes to technology roles, Houston delivers.

"There is great tech talent here," Vos says, pointing out that Bill Gates called Houston the "Silicon Valley of energy" when he was here for CERAWeek. "I think there's an element of that that's very true. There's a lot innovation, there's a lot of creative thinking, and being able to come out of these businesses with huge momentum then go into startups and innovate is a culture change that I think Houston is going through."

The panelists, most of whom are not Houston natives, agreed in a welcoming culture within the business sector.

"I really think that Houston offers great hospitality, and the energy networks here are so strong," Lund says. "You feel the energy of the city."

In total, HIF has raised $200 million this year. Photo via hifglobal.com

Japanese agency invests $36M into Houston e-fuels company's portfolio

coming in hot

Houston-based electrofuel company HIF Global has secured a $36 million investment from the Japan Organization for Metals and Energy Security, a government agency.

The investment, made through an e-fuel subsidiary of Japanese energy company Idemitsu Kosan, is earmarked for HIF’s e-fuel projects in the U.S., Australia, Chile, and Uruguay.

Earlier this year, Idemitsu led a $164 million investment round in HIF. Of that amount, Idemitsu chipped in $114 million. Other investors included Houston-based Baker Hughes along with AME, EIG, Gemstone Investments, and Porsche.

In total, HIF has raised $200 million this year.

“Japan set a priority for the commercial introduction of e-fuels into its fuel supply to support their mandate for 46 percent [greenhouse gas] emissions reduction by 2030. We have already proven e-fuels are a real solution with over 18 months of e-fuels production from our Haru Oni facility in southern Chile,” says Cesar Norton, president and CEO of HIF.

In 2023, Idemitsu agreed to buy e-methanol from HIF’s $6 billion plant in Matagorda County. HIF says the plant will be the world’s first large-scale e-fuel facility. The plant is expected to produce about 1.4 million metric tons per year of e-methanol and about 300,000 metric tons of green hydrogen per year by 2027.

HIF, founded in 2016, aims to produce 150,000 barrels per day of e-fuel and recycle 25 million metric tons per year of carbon dioxide by 2035. E-fuels, which are synthetic alternatives to fossil fuels, include e-gasoline, e-diesel, and e-sustainable aviation fuel converted from e-methanol.

Using electrolyzers powered by renewable energy, HIF begins the e-fuel process by separating hydrogen from oxygen in water. The company then couples the resulting green hydrogen with recycled carbon dioxide to create carbon-neutral e-fuels.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Wind and solar supplied over a third of ERCOT power, report shows

power report

Since 2023, wind and solar power have been the fastest-growing sources of electricity for the Electric Reliability Council of Texas (ERCOT) and increasingly are meeting stepped-up demand, according to a new report from the U.S. Energy Information Administration (EIA).

The report says utility-scale solar generated 50 percent more electricity for ERCOT in the first nine months this year compared with the same period in 2024. Meanwhile, electricity generated by wind power rose 4 percent in the first nine months of this year versus the same period in 2024.

Together, wind and solar supplied 36 percent of ERCOT’s electricity in the first nine months of 2025.

Heavier reliance on wind and solar power comes amid greater demand for ERCOT electricity. In the first nine months of 2025, ERCOT recorded the fastest growth in electricity demand (5 percent) among U.S. power grids compared with the same period last year, according to the report.

“ERCOT’s electricity demand is forecast to grow faster than that of any other grid operator in the United States through at least 2026,” the report says.

EIA forecasts demand for ERCOT electricity will climb 14 percent in the first nine months of 2026 compared with the same period this year. This anticipated jump coincides with a number of large data centers and cryptocurrency mining facilities coming online next year.

The ERCOT grid covers about 90 percent of Texas’ electrical load.

Micro-nuclear reactor to launch next year at Texas A&M innovation campus

nuclear pilot

The Texas A&M University System and Last Energy plan to launch a micro-nuclear reactor pilot project next summer at the Texas A&M-RELLIS technology and innovation campus in Bryan.

Washington, D.C.-based Last Energy will build a 5-megawatt reactor that’s a scaled-down version of its 20-megawatt reactor. The micro-reactor initially will aim to demonstrate safety and stability, and test the ability to generate electricity for the grid.

The U.S. Department of Energy (DOE) fast-tracked the project under its New Reactor Pilot Program. The project will mark Last Energy’s first installation of a nuclear reactor in the U.S.

Private funds are paying for the project, which Robert Albritton, chairman of the Texas A&M system’s board of regents, said is “an example of what’s possible when we try to meet the needs of the state and tap into the latest technologies.”

Glenn Hegar, chancellor of the Texas A&M system, said the 5-megawatt reactor is the kind of project the system had in mind when it built the 2,400-acre Texas A&M-RELLIS campus.

The project is “bold, it’s forward-looking, and it brings together private innovation and public research to solve today’s energy challenges,” Hegar said.

As it gears up to build the reactor, Last Energy has secured a land lease at Texas A&M-RELLIS, obtained uranium fuel, and signed an agreement with DOE. Founder and CEO Bret Kugelmass said the project will usher in “the next atomic era.”

In February, John Sharp, chancellor of Texas A&M’s flagship campus, said the university had offered land at Texas A&M-RELLIS to four companies to build small modular nuclear reactors. Power generated by reactors at Texas A&M-RELLIS may someday be supplied to the Electric Reliability Council of Texas (ERCOT) grid.

Also in February, Last Energy announced plans to develop 30 micro-nuclear reactors at a 200-acre site about halfway between Lubbock and Fort Worth.

Rice University partners with Australian co. to boost mineral processing, battery innovation

critical mineral partnership

Rice University and Australian mineral exploration company Locksley Resources have joined together in a research partnership to accelerate the development of antimony processing in the U.S. Antimony is a critical mineral used for defense systems, electronics and battery storage.

Rice and Locksley will work together to develop scalable methods for extracting and utilizing antimony. Currently, the U.S. relies on imports for nearly all refined antimony, according to Rice.

Locksley will fund the research and provide antimony-rich feedstocks and rare earth elements from a project in the Mojave Desert. The research will explore less invasive hydrometallurgical techniques for antimony extraction and explore antimony-based materials for use in batteries and other energy storage applications.

“This strategic collaboration with Rice marks a pivotal step in executing Locksley’s U.S. strategy,” Nathan Lude, chairman of Locksley Resources, said in a news release. “By fast-tracking our research program, we are helping rebuild downstream capacity through materials innovation that the country urgently requires.”

Pulickel Ajayan, the Benjamin M. and Mary Greenwood Anderson Professor of Materials Science and Nanoengineering at Rice, is the principal investigator of the project.

“Developing scalable, domestic pathways for antimony processing is not only a scientific and engineering challenge but also a national strategic priority,” Ajayan said in the news release. “By combining Rice’s expertise in advanced materials with Locksley’s resources, we can address a critical supply chain gap and build collaborations that strengthen U.S. energy resilience.”

The Rice Advanced Materials Institute (RAMI) will play a major role in supporting the advancement of technology and energy-storage applications.

“This partnership aligns with our mission to lead in materials innovations that address national priorities,” Lane Martin, director of RAMI, said in a news release. “By working with Locksley, we are helping to build a robust domestic supply chain for critical materials and support the advancement of next-generation energy technologies.”