TMEIC will move its headquarters to Houston next year and open a new manufacturing facility in the region later this year. Photo via tmeic.com

A Japanese company has announced its moving its United States headquarters to Houston and is gearing up top open its new Houston-area factory as well.

TMEIC Corporation Americas, previously headquartered in Roanoke, Virginia, will officially be located in Houston, effect March of 2025. Additionally, the company will open a state-of-the-art 144,000-square-foot facility in Brookshire, which will be dedicated to manufacturing utility-scale PV inverters. The expansion is expected to create 300 local jobs.

The TMEIC group specializes in photovoltaic inverters and energy storage systems, and has over 50 GW of renewable energy systems installed worldwide as of July 2024.

"We are excited to make these investments for an expanded presence in the Houston area with the relocation of our headquarters and the opening of our new manufacturing facility,” Manmeet S. Bhatia, president and CEO of TMEIC Corporation Americas, says in a news release. ”These investments and expansions will potentially create up to 300 jobs in the local community,"

The relocation to the Houston as the energy capital of the world is part of TMEIC’s strategic goals for growth in “renewable energy technology, domestic based manufacturing, and bolstering its global sustainability efforts,” according to a news release.

The Brookshire facility will be complete by October of 2024, and will be close to TMEIC’s existing uninterruptible power supply and medium voltage drive manufacturing plant in Katy. When operational, it will have the capacity to produce 9 gigawatts annually.

“This strategic expansion underscores TMEIC's dedication to the renewable energy industry, advancing clean energy technology, maintaining strong client relationships, and competing on a global basis while proudly manufacturing in the United States,” Bhatia adds.

Chevron expects all of its corporate functions to shift to Houston over the next five years. Photo via Getty Images

Following years of speculation, Chevron announces HQ move to Houston

big news

The Energy Capital of the World is adding another jewel to its corporate crown.

With the impending move of Chevron’s headquarters from Northern California to Houston, the Houston area will be home to 24 Fortune 500 companies. Chevron ranks 15th on this year’s Fortune 500.

Oil and gas giant Chevron, currently based in San Ramon, California, will join three Fortune 500 competitors that already maintain headquarters in the Houston area:

  • Spring-based ExxonMobil, No. 7 on the Fortune 500
  • Houston-based Phillips 66, No. 26 on the Fortune 500
  • Houston-based ConocoPhillips, No. 68 on the Fortune 500

Chevron, which posted revenue of $200.9 billion in 2023, employs about 7,000 people in the Houston area and about 2,000 people in San Ramon. The company says its chairman and CEO, Mike Wirth, and vice chairman, Mark Nelson, will move to Houston before the end of 2024.

In an interview with The Wall Street Journal, Wirth acknowledged Chevron’s differences of opinion with California policymakers regarding energy matters.

“We believe California has a number of policies that raise costs, that hurt consumers, that discourage investment and ultimately we think that’s not good for the economy in California and for consumers,” Wirth said.

Chevron expects all of its corporate functions to shift to Houston over the next five years. Jobs that support the company’s California operations will remain in San Ramon, where Chevron employs about 2,000 people. Some Chevron employees in San Ramon will relocate to Houston.

The company’s move to Houston hardly comes as a surprise. Speculation about a relocation to Houston intensified after Chevron sold its 98-acre San Ramon headquarters in 2022 and moved corporate employees to leased office space. Over the past several years, Chevron has shifted various corporate functions to Houston.

“This is just the final step that many industry observers were waiting to happen,” Ken Medlock, senior director of the Baker Institute’s Center for Energy Studies at Rice University, says in a news release.

“To start, Houston provides a world-class location for internationally focused energy companies, which is why there is such a massive international presence here,” Medlock adds. “Texas is also the nation’s largest energy producer across multiple energy sources and is poised to lead in emerging opportunities such as hydrogen and carbon capture, so Houston is a great place for domestically focused activities as well.”

The announcement of Chevron’s exit from California comes just a year after ExxonMobil finalized its relocation from Irving to Spring.

“Chevron’s decision to relocate its headquarters underscores the compelling advantages that position Houston as the prime destination for leading energy companies today and for the future,” Steve Kean, president and CEO of the Greater Houston Partnership, says in a post on the organization’s website.

“With deep roots in our region,” he adds, “Chevron is [a] key player in establishing Houston as a global energy leader. This move will further enhance those efforts.”

Baker Hughes has officially moved into its new headquarters in Houston. Photo via bakerhughes.com

Baker Hughes unveils new HQ in Houston's Energy Corridor

moving in

Houston-based Baker Hughes officially opened the doors to its new headquarters in the Energy Corridor last week.

At a celebration held Oct. 23, the energy service company unveiled its new space within Energy Center II at 575 N. Dairy Ashford. The move represents a consolidation of Baker Hughes' various offices in the Houston-area as the company decreases its corporate footprint by about 346,000-square-feet, according to a report from the Houston Chronicle.

It is moving from its former headquarters in North Houston, near IAH. About 1,300 employees will work from the building, according to a statement from Baker Hughes.

“The opening of our new Houston headquarters is an important moment in our strategic transformation as we continue to take energy forward,” Lorenzo Simonelli, Baker Hughes chairman and CEO, said in a statement. “Collaboration will be key to solving for the energy transition. We look forward to collaborating with our colleagues, partners, customers and new neighbors in the Energy Corridor to solve the Energy Trilemma.”

Additionally, the company reported that the new space will aim to help the company reduce costs, cut emissions, create more flexible workspaces and strengthen relationships within the Energy Corridor.

The new HQ includes features such as

  • Tech- and food-free quiet zones
  • Hybrid experience rooms for enhanced online meetings
  • About 25 open collaboration spaces
  • About 40 meeting rooms, including hybrid meeting rooms and a creative thinking room
  • About 12 community spaces
  • Nursing mothers suites
  • Prayer and meditation rooms

In other HQ news, ExxonMobil officially changed its headquarters to Houston over the summer. A July 5 filing with the United States Securities and Exchange Commission showed a significant step toward the HQ move that Exxon originally announced in early 2022.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston climatech company signs on to massive carbon capture project in Malaysia

big deal

Houston-based CO2 utilization company HYCO1 has signed a memorandum of understanding with Malaysia LNG Sdn. Bhd., a subsidiary of Petronas, for a carbon capture project in Malaysia, which includes potential utilization and conversion of 1 million tons of carbon dioxide per year.

The project will be located in Bintulu in Sarawak, Malaysia, where Malaysia LNG is based, according to a news release. Malaysia LNG will supply HYCO1 with an initial 1 million tons per year of raw CO2 for 20 years starting no later than 2030. The CCU plant is expected to be completed by 2029.

"This is very exciting for all stakeholders, including HYCO1, MLNG, and Petronas, and will benefit all Malaysians," HYCO1 CEO Gregory Carr said in the release. "We approached Petronas and MLNG in the hopes of helping them solve their decarbonization needs, and we feel honored to collaborate with MLNG to meet their Net Zero Carbon Emissions by 2050.”

The project will convert CO2 into industrial-grade syngas (a versatile mixture of carbon monoxide and hydrogen) using HYCO1’s proprietary CUBE Technology. According to the company, its CUBE technology converts nearly 100 percent of CO2 feed at commercial scale.

“Our revolutionary process and catalyst are game changers in decarbonization because not only do we prevent CO2 from being emitted into the atmosphere, but we transform it into highly valuable and usable downstream products,” Carr added in the release.

As part of the MoU, the companies will conduct a feasibility study evaluating design alternatives to produce low-carbon syngas.

The companies say the project is expected to “become one of the largest CO2 utilization projects in history.”

HYCO1 also recently announced that it is providing syngas technology to UBE Corp.'s new EV electrolyte plant in New Orleans. Read more here.

Tackling methane in the energy transition: Takeaways from Global Methane Hub and HETI

The view from heti

Leaders from across the energy value chain gathered in Houston for a roundtable hosted by the Global Methane Hub (GMH) and the Houston Energy Transition Initiative (HETI). The session underscored the continued progress to reduce methane emissions as the energy industry addresses the dual challenge of producing more energy that the world demands while simultaneously reducing emissions.

The Industry’s Shared Commitment and Challenge

There’s broad recognition across the industry that methane emissions must be tackled with urgency, especially as natural gas demand is projected to grow 3050% by 2050. This growth makes reducing methane leakage more than a sustainability issue—it’s also a matter of global market access and investor confidence.

Solving this issue, however, requires overcoming technical challenges that span infrastructure, data acquisition, measurement precision, and regulatory alignment.

Getting the Data Right: Top-Down vs. Bottom-Up

Accurate methane leak monitoring and quantification is the cornerstone of any effective mitigation strategy. A key point of discussion was the differentiation between top-down and bottom-up measurement approaches.

Top-down methods such as satellite and aerial monitoring offer broad-area coverage and can identify large emission plumes. Technologies such as satellite-based remote sensing (e.g., using high-resolution imagery) or airborne methane surveys (using aircraft equipped with tunable diode laser absorption spectroscopy) are commonly used for wide-area detection. While these methods are efficient for identifying large-scale emission hotspots, their accuracy is lower when it comes to quantifying emissions at the source, detecting smaller, diffuse leaks, and providing continuous monitoring.

In contrast, bottom-up methods focus on direct, on-site detection at the equipment level, providing more granular and precise measurements. Technologies used here include optical gas imaging (OGI) cameras, flame ionization detectors (FID), and infrared sensors, which can directly detect methane at the point of release. These methods are more accurate but can be resource and infrastructure intensive, requiring frequent manual inspections or continuous monitoring installations, which can be costly and technically challenging in certain environments.

The challenge lies in combining both methods: top-down for large-scale monitoring and bottom-up for detailed, accurate measurements. No single technology is perfect or all-inclusive. An integrated approach that uses both datasets will help to create a more comprehensive picture of emissions and improve mitigation efforts.

From Detection to Action: Bridging the Gap

Data collection is just the first step—effective action follows. Operators are increasingly focused on real-time detection and mitigation. However, operational realities present obstacles. For example, real-time leak detection and repair (LDAR) systems—particularly for continuous monitoring—face challenges due to infrastructure limitations. Remote locations like the Permian Basin may lack the stable power sources needed to run continuous monitoring equipment to individual assets.

Policy, Incentives, and Regulatory Alignment

Another critical aspect of the conversation was the need for policy incentives that both promote best practices and accommodate operational constraints. Methane fees, introduced to penalize emissions, have faced widespread resistance due to their design flaws that in many cases actually disincentivize methane emissions reductions. Industry stakeholders are advocating for better alignment between policy frameworks and operational capabilities.

In the United States, the Subpart W rule, for example, mandates methane reporting for certain facilities, but its implementation has raised concerns about the accuracy of some of the new reporting requirements. Many in the industry continue to work with the EPA to update these regulations to ensure implementation meets desired legislative expectations.

The EU’s demand for quantified methane emissions for imported natural gas is another driving force, prompting a shift toward more detailed emissions accounting and better data transparency. Technologies that provide continuous, real-time monitoring and automated reporting will be crucial in meeting these international standards.

Looking Ahead: Innovation and Collaboration

The roundtable highlighted the critical importance of advancing methane detection and mitigation technologies and integrating them into broader emissions reduction strategies. The United States’ 45V tax policy—focused on incentivizing production of low-carbon intensity hydrogen often via reforming of natural gas—illustrates the growing momentum towards science-based accounting and transparent data management. To qualify for 45V incentives, operators can differentiate their lower emissions intensity natural gas by providing foreground data to the EPA that is precise and auditable, essential for the industry to meet both environmental and regulatory expectations. Ultimately, the success of methane reduction strategies depends on collaboration between the energy industry, technology providers, and regulators.

The roundtable underscored that while significant progress has been made in addressing methane emissions, technical, regulatory, and operational challenges remain. Collaboration across industry, government, and technology providers is essential to overcoming these barriers. With better data, regulatory alignment, and investments in new technologies, the energy sector can continue to reduce methane emissions while supporting global energy demands.

———

HETI thanks Chris Duffy, Baytown Blue Hydrogen Venture Executive, ExxonMobil; Cody Johnson, CEO, SCS Technologies; and Nishadi Davis, Head of Carbon Advisory Americas, wood plc, for their participation in this event.

This article originally appeared on the Greater Houston Partnership's Houston Energy Transition Initiative blog. HETI exists to support Houston's future as an energy leader. For more information about the Houston Energy Transition Initiative, EnergyCapitalHTX's presenting sponsor, visit htxenergytransition.org.

Houston battery recycling company signs 15-year deal to supply Texas flagship facility

green team

Houston- and Singapore-headquartered Ace Green Recycling, a provider of sustainable battery recycling technology solutions, has secured a 15-year battery material supply agreement with Miami-based OM Commodities.

The global commodities trading firm will supply Ace with at least 30,000 metric tons of lead scrap annually, which the company expects to recycle at its planned flagship facility in Texas. Production is expected to commence in 2026.

"We believe that Ace's future Texas facility is poised to play a key role in addressing many of the current challenges in the lead industry in the U.S., while helping the country meet the growing domestic demand for valuable battery materials," Nishchay Chadha, CEO and co-founder of Ace, said in a news release. "This agreement with OM Commodities will provide us with enough supply to support our Texas facility during all of its current planned phases, enabling us to achieve optimal efficiencies as we deploy our solutions in the U.S. market. With OM Commodities being a U.S.-based leader in metals doing business across the Americas and Asia with a specialty in lead batteries, we look forward to leveraging their expertise in the space as we advance our scale-up efforts."

The feedstock will be sufficient to cover 100 percent of Ace's phase one recycling capacity at the Texas facility, according to the statement. The companies are also discussing future lithium battery recycling collaborations.

"Ace is a true pioneer when it comes to providing an environmentally friendly and economically superior solution to recycle valuable material from lead scrap," Yiannis Dumas, president of OM Commodities, added in the news release. "We look forward to supporting Ace with lead feedstock as they scale up their operations in Texas and helping create a more circular and sustainable battery materials supply chain in the U.S."

Additionally, ACE shared that it is expected to close a merger with Athena Technology Acquisition Corp. II (NYSE: ATEK) in the second half of 2025, after which Ace will become a publicly traded company on the Nasdaq Stock Market under the ticker symbol "AGXI."

"As we continue to scale our lead and lithium battery recycling technologies to help support the markets for both internal combustion engines and electric vehicles, we expect that our upcoming listing will be a key accelerator of growth for Ace,” Chada said.