The Woodlands-based Lancium has licensed patents to ERCOT that help increase or decrease power consumption during peak periods or emergencies. Photo courtesy of ERCOT

Lancium, a company based in The Woodlands that specializes in infrastructure for connecting large-scale data centers to power grids, is licensing a portfolio of patents to the Electric Reliability Council of Texas (ERCOT) at no cost.

In a news release, Lancium says the intellectual property agreement “ensures ERCOT can sublicense these patents freely, thereby expanding market participation opportunities without risk of patent infringement disputes.”

“This agreement exemplifies Lancium’s dedication to supporting grid stability and innovation across the ERCOT region,” Michael McNamara, CEO of Lancium, said in a news release. “While these patents represent significant technological advancements, we believe that enabling ERCOT and its market participants to operate freely is more valuable for the long-term reliability and resilience of the Texas grid.”

The licensed patents encompass Lancium technologies that support load resources in ERCOT’s market, which covers about 90 percent of Texas. Specifically, the patents deal with controllable load resources. A controlled load resource allows ERCOT and other grids to increase or decrease power consumption during peak periods or emergencies.

ERCOT predicts power demand in Texas will nearly double by 2030, “in part due to more requests to plug into the grid from large users like data centers, crypto mining facilities, hydrogen production plants, and oil and gas companies,” The Texas Tribune reported.

CenterPoint Energy aims to complete its suite of grid resiliency projects before the 2025 hurricane season. Photo via centerpointenergy.com

CenterPoint reports progress on grid improvements ahead of 2025 hurricane season

grid resilience

As part of an ongoing process to make Houston better prepared for climate disasters, CenterPoint Energy announced its latest progress update on the second phase of the Greater Houston Resiliency Initiative (GHRI).

CenterPoint reported that it has completed 70 percent of its resiliency work and all GHRI-related actions are expected to be complete before the official start of the 2025 hurricane season.

"Our entire CenterPoint Houston Electric team is focused on completing this historic suite of grid resiliency actions before the start of hurricane season,” Darin Carroll, Senior Vice President of CenterPoint's Electric Business, said in a news release. “That is our goal, and we will achieve it. To date, we have made significant progress as part of this historic effort.”

CenterPoint’s resiliency solutions include clearing higher-risk vegetation across thousands of miles of power lines, adding thousands more automation devices capable of self-healing, installing thousands of storm-resistant poles, and undergrounding hundreds of miles of power lines.

CenterPoint's GHRI efforts, which entered a second phase in September 2024, aim to improve overall grid resiliency and reliability and are estimated to reduce outages for customers by more than 125 million minutes annually, according to the company. It has undergrounded nearly 350 miles of power lines, about 85 percent of the way toward its target of 400 miles, which will help improve resiliency and reduce the risk of outages. CenterPoint also aims to install the first of 100 new local weather monitoring stations by June 1.

In March, CenterPoint cleared 655 miles of high-risk vegetation near power lines, installed 1,215 automated reliability devices capable of self-healing, and added an additional 3,300 storm-resilient poles.

In April, CenterPoint will begin building a network of 100 new weather monitoring stations, which will provide 24/7 weather monitoring and storm response preparation.

“We will continue to work every day to complete these critical improvements as part of our company's goal of building the most resilient coastal grid in the country,” Carroll added in the release.

CenterPoint has partnered with Atlanta-based Osmose and Australia-based Neara to use AI-powered predictive modeling to inform decisions on restorations and risk. Photo via Getty Images

CenterPoint partners with AI and infrastructure companies to boost reliability

power partnership

Houston utilities giant CenterPoint is partnering with companies from Atlanta and Australia to use AI to increase data accuracy and strengthen the power grid.

The partnership is part of a collaboration between AI-powered predictive modeling platform company Neara and utility infrastructure asset assessment solutions company Osmose, according to a news release.

Last year, CenterPoint Energy announced an agreement with Neara for engineering-grade simulations and analytics and to deploy Neara’s AI capabilities across CenterPoint’s Greater Houston service area. Now, Neaera will work with Osmose to give energy providers like CenterPoint more up-to-date data to inform decisions on restorations and risks.

CenterPoint Energy is already using the partnership's tools to improve network reliability and enhance its storm preparedness.

"At CenterPoint Energy, we are focused every day on building the most resilient coastal grid in the nation and increasing the resiliency of the communities we are privileged to serve," Eric Easton, VP of Grid Transformation at CenterPoint Energy, said in a news release.

According to Osmose, its services to CenterPoint can result in repair cost savings of up to 70 percent and boost restoration times by up to 80 percent. Osmose also said its services assist with being 25 percent better at ensuring the most critical repairs happen first.

"By integrating Neara's AI-driven modeling with our industry-leading field services, we're giving utilities a powerful tool to make smarter, more data-driven decisions," Mike Adams, CEO of Osmose, said in a news release. "Accurate asset data is the foundation for a resilient grid, and this partnership provides the precision needed to maximize reliability and performance."

Ultimately, the companies say the partnership aims to help minimize disruptions and improve reliability for CenterPoint customers.

"As we work to leverage technology to deliver better outcomes for our customers, we're continuing to enhance our advanced modeling capabilities, which includes collaborating with cutting-edge technology providers like Neara and Osmose,” Easton added in the release.

Despite its high energy production, Texas has had more outages than any other state over the past five years due to the increasing frequency and severity of extreme weather events and rapidly growing demand. Photo via Getty Images

Untapped potential: The role of residential energy management in Texas

Guest Column

Texas stands out among other states when it comes to energy production.

Even after mass rolling blackouts during Winter Storm Uri in 2021, the Lone Star State produced more electricity than any other state in 2022. However, it also exemplifies how challenging it can be to ensure grid reliability. The following summer, the state’s grid manager, the Electrical Reliability Council of Texas (ERCOT), experienced ten occasions of record-breaking demand.

Despite its high energy production, Texas has had more outages than any other state over the past five years due to the increasing frequency and severity of extreme weather events and rapidly growing demand, as the outages caused by Hurricane Beryl demonstrated.

A bigger storm is brewing

Electric demand is poised to increase exponentially over the next few years. Grid planners nationwide are doubling their five-year load forecast. Texas predicts it will need to provide nearly double the amount of power within six years. These projections anticipate increasing demand from buildings, transportation, manufacturing, data centers, AI and electrification, underscoring the daunting challenges utilities face in maintaining grid reliability and managing rising demand.

However, Texas can accelerate its journey to becoming a grid reliability success story by taking two impactful steps. First, it could do more to encourage the adoption of distributed energy resources (DERs) like residential solar and battery storage to better balance the prodigious amounts of remote grid-scale renewables that have been deployed over the past decade. More DERs mean more local energy resources that can support the grid, especially local distribution circuits that are prone to storm-related outages. Second, by combining DERs with modern demand-side management programs and technology, utilities can access and leverage these additional resources to help them manage peak demand in real time and avoid blackout scenarios.

Near-term strategies and long-term priorities

Increasing electrical capacity with utility-scale renewable energy and storage projects and making necessary electrical infrastructure updates are critical to meet projected demand. However, these projects are complex, resource-intensive and take years to complete. The need for robust demand-side management is more urgent than ever.

Texas needs rapidly deployable solutions now. That’s where demand-side management comes in. This strategy enables grid operators to keep the lights on by lowering peak demand rather than burning more fossil fuels to meet it or, worse, shutting everything off.

Demand response, a demand-side management program, is vital in balancing the grid by lowering electricity demand through load control devices to ensure grid stability. Programs typically involve residential energy consumers volunteering to let the grid operator reduce their energy consumption at a planned time or when the grid is under peak load, typically in exchange for a credit on their energy bill. ERCOT, for example, implements demand response and rate structure programs to reduce strain on the grid and plans to increase these strategies in the future, especially during the months when extreme weather events are more likely and demand is highest.

The primary solution for meeting peak demand and preventing blackouts is for the utility to turn on expensive, highly polluting, gas-powered “peaker” plants. Unfortunately, there’s a push to add more of these plants to the grid in anticipation of increasing demand. Instead of desperately burning fossil fuels, we should get more out of our existing infrastructure through demand-side management.

Optimizing existing infrastructure

The effectiveness of demand response programs depends in part on energy customers' participation. Despite the financial incentive, customers may be reluctant to participate because they don’t want to relinquish control over their AC. Grid operators also need timely energy usage data from responsive load control technology to plan and react to demand fluctuations. Traditional load control switches don’t provide these benefits.

However, intelligent residential load management technology like smart panels can modernize demand response programs and maximize their effectiveness with real-time data and unprecedented responsiveness. They can encourage customer participation with a less intrusive approach – unlocking the ability for the customer to choose from multiple appliances to enroll. They can also provide notifications for upcoming demand response events, allowing the customer to plan for the event or even opt-out by appliance. In addition to their demand response benefits, smart panels empower homeowners to optimize their home energy and unlock extended runtime for home batteries during a blackout.

Utilities and government should also encourage the adoption of distributed energy resources like rooftop solar and home batteries. These resources can be combined with residential load management technology to drastically increase the effectiveness of demand response programs, granting utilities more grid-stabilizing resources to prevent blackouts.

Solar and storage play a key role

During the ten demand records in the summer of 2023, batteries discharging in the evening helped avoid blackouts, while solar and wind generation covered more than a third of ERCOT's daytime load demand, preventing power price spikes.

Rooftop solar panels generate electricity that can be stored in battery backup systems, providing reliable energy during outages or peak demand. Smart panels extend the runtime of these batteries through automated energy optimization, ensuring critical loads are prioritized and managed efficiently.

Load management technology, like smart panels, enhances the effectiveness of DERs. In rolling blackouts, homeowners with battery storage can rely on smart panels to manage energy use, keeping essential appliances operational and extending stored energy usability. Smart panels allow utilities to effectively manage peak demand, enabling load flexibility and preventing grid overburdening. These technologies and an effective demand response strategy can help Texans optimize the existing energy capacity and infrastructure.

A more resilient energy future

Texas can turn its energy challenges into opportunities by embracing advanced energy management technologies and robust demand-side strategies. Smart panels and distributed energy resources like solar and battery storage offer a promising path to a resilient and efficient grid. As Texans navigate increasing electricity demands and extreme weather events, these innovations provide hope for a future where reliable energy is accessible to all, ensuring grid stability and enhancing the quality of life across the state.

———

Kelly Warner is the CEO of Lumin, a responsive energy management solutions company.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston clean energy company to develop hybrid renewable project in Port Arthur

power project

Houston-based clean energy company Diligence Offshore Services has announced a strategic partnership with Florida-based floating solar manufacturing company AccuSolar for the development of a renewable energy project in the Port Arthur area.

Known as the Pleasure Island Power Collective, it will be built on 2,275 acres across Pleasure Island and Sabine Lake. It is expected to generate 391 megawatts of clean power, alongside a utility-scale battery energy storage system. It will also feature a 225-megawatt coastal onshore wind farm, with energy produced on-site used to power a data center for adaptive superintelligence, making it entirely self-sustained by renewable sources, according to the company.

AccuSolar will design and manufacture the project and power will be distributed through the Canaan Energy Corridor

“We are incredibly proud to partner with a fellow U.S. company like AccuSolar,” Harry C. Crawford III, founder and managing member of Diligence Offshore, said in a news release. “Their expertise in American manufacturing and floating solar technology is essential to the success of the Pleasure Island Power Collective.”

The project is expected to bring economic growth and a significant number of manufacturing jobs to the area during the construction phase and long-term operations.

Diligence Offshore is pursuing a DPA Title 1 DX rating under the Defense Production Act to help advance the project's development schedule, according to the release, which could lead to immediate manufacturing jobs.

“This partnership not only strengthens our domestic supply chain but also accelerates our vision to bring economic freedom and climate resilience to the Gulf Coast,” Crawford added in the release.

Houston organization proposes Gulf Coast index for hydrogen market

hydrogen index

The Clean Hydrogen Buyers Alliance has proposed an index aimed at bringing transparency to pricing in the emerging hydrogen market.

The Houston-based alliance said the Gulf Coast Hydrogen Index, based on real-time data, would provide more clarity to pricing in the global market for hydrogen. The benchmarking effort is being designed to benefit clean hydrogen buyers, sellers and investors. The index would help position the U.S. “as the trading anchor for hydrogen’s next chapter as a globally traded commodity,” the alliance said.

According to ResearchAndMarkets.com, the global market for clean hydrogen was valued at $200 billion in 2024 and is projected to reach $700 billion by 2040.

John Flory, president of the alliance, said the lack of a pricing index has relegated hydrogen to niche-market status.

“Capital is waiting. Buyers are ready. But until now, there’s been no credible, transparent pricing signal to guide clean hydrogen investing or contracting,” Edward Morse, co-chairman of the Clean Hydrogen Transaction Advisory Committee, said in a news release.

The index would treat the Gulf Coast as the primary delivery hub for pipeline-grade hydrogen in three categories: basic, low-carbon and ultra-low-carbon. It would be similar to the Henry Hub index for pricing of natural gas.

Roger Ballentine, co-chairman of the clean energy advisory committee, said the hydrogen index would build confidence in this energy source among government agencies, companies and investors. A Henry Hub-style benchmark for hydrogen “provides clarity, reduces risk, and lays the foundation for clean energy to become a globally traded commodity critical to decarbonization,” he said.

The Gulf Coast, with Texas as the focal point, is key to the evolution of the U.S. clean hydrogen economy, according to the Fuel Cell and Hydrogen Energy Association.

At the core of the Gulf Coast’s role is the U.S. Department of Energy's selection of the Gulf Coast as one of the country’s seven regional hubs for clean hydrogen. However, the DOE has proposed cutting funding for the HyVelocity Gulf Coast Hydrogen Hub, a $1.2 billion development in Texas and Louisiana by AES, Air Liquide, Chevron, ExxonMobil, MHI Hydrogen Infrastructure and Ørsted, according to a new list of proposed DOE funding cancellations.

2 Houston energy giants appear on Fortune’s inaugural AI ranking

AI Leaders

Two Houston-area energy leaders appear on Fortune’s inaugural list of the top adopters of AI among Fortune 500 companies.

They are:

  • No. 7 energy company ExxonMobil, based in Spring
  • No. 47 energy company Chevron, based in Houston

They are joined by Spring-based tech company Hewlett Packard Enterprise, No. `9.

All three companies have taken a big dive into the AI pool.

In 2024, ExxonMobil’s executive chairman and CEO, Darren Woods, explained that AI would play a key role in achieving a $15 billion reduction in operating costs by 2027.

“There is a concerted effort to make sure that we're really working hard to apply that new technology to the opportunity set within the company to drive effectiveness and efficiency,” Woods told Wall Street analysts.

At Chevron, AI tools are being used to quickly analyze data and extract insights from it, according to tech news website VentureBeat. Also, Chevron employs advanced AI systems known as large language models (LLMs) to create engineering standards, specifications and safety alerts. AI is even being put to work in Chevron’s exploration initiatives.

Bill Braun, Chevron’s chief information officer, said at a VentureBeat-sponsored event in 2024 that AI-savvy data scientists, or “digital scholars,” are always embedded within workplace teams “to act as a catalyst for working differently.”

The Fortune AIQ 50 ranking is based on ServiceNow’s Enterprise AI Maturity Index, an annual measurement of how prepared organizations are to adopt and scale AI. To evaluate how Fortune 500 companies are rolling out AI and how much they value AI investments, Fortune teamed up with Enterprise Technology Research. The results went into computing an AIQ score for each company.

At the top of the ranking is Alphabet (owner of Google and YouTube), followed by Visa, JPMorgan Chase, Nvidia and Mastercard. Aside from ExxonMobil, Hewlett Packard Enterprise, and Chevron, two other Texas companies made the list: Arlington-based homebuilder D.R. Horton (No. 29) and Austin-based software company Oracle (No. 37).

“The Fortune AIQ 50 demonstrates how companies across industry sectors are beginning to find real value from the deployment of AI technology,” Jeremy Kahn, Fortune’s AI editor, said in a news release. “Clearly, some sectors, such as tech and finance, are pulling ahead of others, but even in so-called 'old economy' industries like mining and transport, there are a few companies that are pulling away from their peers in the successful use of AI.

---

This article originally appeared on InnovationMap.com.