The Woodlands-based Lancium has licensed patents to ERCOT that help increase or decrease power consumption during peak periods or emergencies. Photo courtesy of ERCOT

Lancium, a company based in The Woodlands that specializes in infrastructure for connecting large-scale data centers to power grids, is licensing a portfolio of patents to the Electric Reliability Council of Texas (ERCOT) at no cost.

In a news release, Lancium says the intellectual property agreement “ensures ERCOT can sublicense these patents freely, thereby expanding market participation opportunities without risk of patent infringement disputes.”

“This agreement exemplifies Lancium’s dedication to supporting grid stability and innovation across the ERCOT region,” Michael McNamara, CEO of Lancium, said in a news release. “While these patents represent significant technological advancements, we believe that enabling ERCOT and its market participants to operate freely is more valuable for the long-term reliability and resilience of the Texas grid.”

The licensed patents encompass Lancium technologies that support load resources in ERCOT’s market, which covers about 90 percent of Texas. Specifically, the patents deal with controllable load resources. A controlled load resource allows ERCOT and other grids to increase or decrease power consumption during peak periods or emergencies.

ERCOT predicts power demand in Texas will nearly double by 2030, “in part due to more requests to plug into the grid from large users like data centers, crypto mining facilities, hydrogen production plants, and oil and gas companies,” The Texas Tribune reported.

CenterPoint Energy aims to complete its suite of grid resiliency projects before the 2025 hurricane season. Photo via centerpointenergy.com

CenterPoint reports progress on grid improvements ahead of 2025 hurricane season

grid resilience

As part of an ongoing process to make Houston better prepared for climate disasters, CenterPoint Energy announced its latest progress update on the second phase of the Greater Houston Resiliency Initiative (GHRI).

CenterPoint reported that it has completed 70 percent of its resiliency work and all GHRI-related actions are expected to be complete before the official start of the 2025 hurricane season.

"Our entire CenterPoint Houston Electric team is focused on completing this historic suite of grid resiliency actions before the start of hurricane season,” Darin Carroll, Senior Vice President of CenterPoint's Electric Business, said in a news release. “That is our goal, and we will achieve it. To date, we have made significant progress as part of this historic effort.”

CenterPoint’s resiliency solutions include clearing higher-risk vegetation across thousands of miles of power lines, adding thousands more automation devices capable of self-healing, installing thousands of storm-resistant poles, and undergrounding hundreds of miles of power lines.

CenterPoint's GHRI efforts, which entered a second phase in September 2024, aim to improve overall grid resiliency and reliability and are estimated to reduce outages for customers by more than 125 million minutes annually, according to the company. It has undergrounded nearly 350 miles of power lines, about 85 percent of the way toward its target of 400 miles, which will help improve resiliency and reduce the risk of outages. CenterPoint also aims to install the first of 100 new local weather monitoring stations by June 1.

In March, CenterPoint cleared 655 miles of high-risk vegetation near power lines, installed 1,215 automated reliability devices capable of self-healing, and added an additional 3,300 storm-resilient poles.

In April, CenterPoint will begin building a network of 100 new weather monitoring stations, which will provide 24/7 weather monitoring and storm response preparation.

“We will continue to work every day to complete these critical improvements as part of our company's goal of building the most resilient coastal grid in the country,” Carroll added in the release.

CenterPoint has partnered with Atlanta-based Osmose and Australia-based Neara to use AI-powered predictive modeling to inform decisions on restorations and risk. Photo via Getty Images

CenterPoint partners with AI and infrastructure companies to boost reliability

power partnership

Houston utilities giant CenterPoint is partnering with companies from Atlanta and Australia to use AI to increase data accuracy and strengthen the power grid.

The partnership is part of a collaboration between AI-powered predictive modeling platform company Neara and utility infrastructure asset assessment solutions company Osmose, according to a news release. 

Last year, CenterPoint Energy announced an agreement with Neara for engineering-grade simulations and analytics and to deploy Neara’s AI capabilities across CenterPoint’s Greater Houston service area. Now, Neaera will work with Osmose to give energy providers like CenterPoint more up-to-date data to inform decisions on restorations and risks.

CenterPoint Energy is already using the partnership's tools to improve network reliability and enhance its storm preparedness.

"At CenterPoint Energy, we are focused every day on building the most resilient coastal grid in the nation and increasing the resiliency of the communities we are privileged to serve," Eric Easton, VP of Grid Transformation at CenterPoint Energy, said in a news release.

According to Osmose, its services to CenterPoint can result in repair cost savings of up to 70 percent and boost restoration times by up to 80 percent. Osmose also said its services assist with being 25 percent better at ensuring the most critical repairs happen first.

"By integrating Neara's AI-driven modeling with our industry-leading field services, we're giving utilities a powerful tool to make smarter, more data-driven decisions," Mike Adams, CEO of Osmose, said in a news release. "Accurate asset data is the foundation for a resilient grid, and this partnership provides the precision needed to maximize reliability and performance."

Ultimately, the companies say the partnership aims to help minimize disruptions and improve reliability for CenterPoint customers.

"As we work to leverage technology to deliver better outcomes for our customers, we're continuing to enhance our advanced modeling capabilities, which includes collaborating with cutting-edge technology providers like Neara and Osmose,” Easton added in the release.

Despite its high energy production, Texas has had more outages than any other state over the past five years due to the increasing frequency and severity of extreme weather events and rapidly growing demand. Photo via Getty Images

Untapped potential: The role of residential energy management in Texas

Guest Column

Texas stands out among other states when it comes to energy production.

Even after mass rolling blackouts during Winter Storm Uri in 2021, the Lone Star State produced more electricity than any other state in 2022. However, it also exemplifies how challenging it can be to ensure grid reliability. The following summer, the state’s grid manager, the Electrical Reliability Council of Texas (ERCOT), experienced ten occasions of record-breaking demand.

Despite its high energy production, Texas has had more outages than any other state over the past five years due to the increasing frequency and severity of extreme weather events and rapidly growing demand, as the outages caused by Hurricane Beryl demonstrated.

A bigger storm is brewing

Electric demand is poised to increase exponentially over the next few years. Grid planners nationwide are doubling their five-year load forecast. Texas predicts it will need to provide nearly double the amount of power within six years. These projections anticipate increasing demand from buildings, transportation, manufacturing, data centers, AI and electrification, underscoring the daunting challenges utilities face in maintaining grid reliability and managing rising demand.

However, Texas can accelerate its journey to becoming a grid reliability success story by taking two impactful steps. First, it could do more to encourage the adoption of distributed energy resources (DERs) like residential solar and battery storage to better balance the prodigious amounts of remote grid-scale renewables that have been deployed over the past decade. More DERs mean more local energy resources that can support the grid, especially local distribution circuits that are prone to storm-related outages. Second, by combining DERs with modern demand-side management programs and technology, utilities can access and leverage these additional resources to help them manage peak demand in real time and avoid blackout scenarios.

Near-term strategies and long-term priorities

Increasing electrical capacity with utility-scale renewable energy and storage projects and making necessary electrical infrastructure updates are critical to meet projected demand. However, these projects are complex, resource-intensive and take years to complete. The need for robust demand-side management is more urgent than ever.

Texas needs rapidly deployable solutions now. That’s where demand-side management comes in. This strategy enables grid operators to keep the lights on by lowering peak demand rather than burning more fossil fuels to meet it or, worse, shutting everything off.

Demand response, a demand-side management program, is vital in balancing the grid by lowering electricity demand through load control devices to ensure grid stability. Programs typically involve residential energy consumers volunteering to let the grid operator reduce their energy consumption at a planned time or when the grid is under peak load, typically in exchange for a credit on their energy bill. ERCOT, for example, implements demand response and rate structure programs to reduce strain on the grid and plans to increase these strategies in the future, especially during the months when extreme weather events are more likely and demand is highest.

The primary solution for meeting peak demand and preventing blackouts is for the utility to turn on expensive, highly polluting, gas-powered “peaker” plants. Unfortunately, there’s a push to add more of these plants to the grid in anticipation of increasing demand. Instead of desperately burning fossil fuels, we should get more out of our existing infrastructure through demand-side management.

Optimizing existing infrastructure

The effectiveness of demand response programs depends in part on energy customers' participation. Despite the financial incentive, customers may be reluctant to participate because they don’t want to relinquish control over their AC. Grid operators also need timely energy usage data from responsive load control technology to plan and react to demand fluctuations. Traditional load control switches don’t provide these benefits.

However, intelligent residential load management technology like smart panels can modernize demand response programs and maximize their effectiveness with real-time data and unprecedented responsiveness. They can encourage customer participation with a less intrusive approach – unlocking the ability for the customer to choose from multiple appliances to enroll. They can also provide notifications for upcoming demand response events, allowing the customer to plan for the event or even opt-out by appliance. In addition to their demand response benefits, smart panels empower homeowners to optimize their home energy and unlock extended runtime for home batteries during a blackout.

Utilities and government should also encourage the adoption of distributed energy resources like rooftop solar and home batteries. These resources can be combined with residential load management technology to drastically increase the effectiveness of demand response programs, granting utilities more grid-stabilizing resources to prevent blackouts.

Solar and storage play a key role

During the ten demand records in the summer of 2023, batteries discharging in the evening helped avoid blackouts, while solar and wind generation covered more than a third of ERCOT's daytime load demand, preventing power price spikes.

Rooftop solar panels generate electricity that can be stored in battery backup systems, providing reliable energy during outages or peak demand. Smart panels extend the runtime of these batteries through automated energy optimization, ensuring critical loads are prioritized and managed efficiently.

Load management technology, like smart panels, enhances the effectiveness of DERs. In rolling blackouts, homeowners with battery storage can rely on smart panels to manage energy use, keeping essential appliances operational and extending stored energy usability. Smart panels allow utilities to effectively manage peak demand, enabling load flexibility and preventing grid overburdening. These technologies and an effective demand response strategy can help Texans optimize the existing energy capacity and infrastructure.

A more resilient energy future

Texas can turn its energy challenges into opportunities by embracing advanced energy management technologies and robust demand-side strategies. Smart panels and distributed energy resources like solar and battery storage offer a promising path to a resilient and efficient grid. As Texans navigate increasing electricity demands and extreme weather events, these innovations provide hope for a future where reliable energy is accessible to all, ensuring grid stability and enhancing the quality of life across the state.

———

Kelly Warner is the CEO of Lumin, a responsive energy management solutions company.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

10+ must-attend Houston energy transition events happening in Q3 2025

Must-Attend Meetings

Editor's note: Q3 is here, and with it, a full slate of must-attend events for Houston energy professionals. On the agenda are casual mixers, exciting showcases, week-long happenings, and more. Mark your calendars for these top Houston energy transition events coming up from July to September 2025, and begin registering today. Please note: this article may be updated to include additional events.

July 17 — TEX-E Energy, Innovation, and Entrepreneurship networking mixer

The Texas Exchange for Energy & Climate Entrepreneurship hosts this casual networking event to connect the Houston energy and climate tech ecosystem.

This event takes place Thursday, July 17 at 5 pm at Second Draught. Click here to register.

July 29 — Center for Houston's Future presents Summer Salon

This year's Summer Salon breakfast program is titled "Digital Technology and AI: Challenges and Opportunities for Driving Energy Innovation." Sponsored by bp, it will feature a timely conversation about the intersection of digital technology (including AI) and energy innovation.

This event takes place Tuesday, July 29 at 7:30 am at Junior League of Houston. Click here to register.

August 21 — Transition on Tap

Greentown Labs’ signature networking event returns in August to foster conversations and connections within Houston's climate and energy transition ecosystem. Entrepreneurs, investors, students, philanthropists, and more are invited to attend, meet colleagues, discuss solutions, and engage with the growing community.

This event takes place Thursday, August 21 at 5:30 pm at Greentown Labs. Click here to register.

August 22 – Determined to Lead Women Lunch: Investing Through Market Cycles with Ellen Wilkirson

EnergyTech Nexus hosts a monthly Determined to Lead Women’s Lunch as part of its ongoing efforts to create safe spaces for women leaders in the energy transition to connect, learn, and lead. The August session features Ellen Wilkirson, principal at Rev Innovations. With deep experience across traditional and transition energy sectors, Wilkirson will share how she’s approached investing through multiple market and commodity cycles and what it means to be a clean energy investor in today’s evolving landscape.

This event takes place Friday, August 22 at 1 pm. Click here to register.

August 27-28 — 6th Texas Energy Forum 2025

The 6th Texas Energy Forum will dive deep into the strategies, policies, and innovative solutions that reinforce energy security for the United States and its allies and fuel economic growth — centered on Texas’ pivotal role in the global energy landscape. Key discussions will address the future of regulatory reform, tariffs, and tax incentives; advancements in oil, gas, and LNG markets; the expansion of power generation; and breakthroughs in EVs and charging infrastructure. This year's topic is "Texas: The Energy Innovation Powerhouse."

This event begins Wednesday, August 27 at the Petroleum Club of Houston. Click here to register.

September 3-4 — 11th Annual Digitalization in Oil & Gas Conference

This conference will delve deep into the intersection of digitalization and decarbonization, highlighting the transformation required for the oil and gas sector to stay relevant, resilient, and achieve business value. This year, the focus is on leveraging AI and generative AI, driving sustainability and workforce development, and achieving operational excellence through digitalization. Key objectives include building future-ready facilities, planning for a lower carbon market, and realizing business value through innovative solutions.

This event begins Wednesday, September 3 at Hilton Americas Houston. Click here to register.

September 8-10 — SPE Energy Transition Symposium

The SPE Energy Transition Symposium brings together professionals from multiple disciplines across the energy sector, offering a comprehensive platform for learning, networking, and collaboration. Its primary objective is to facilitate the exchange and dissemination of knowledge drawn from the insights of industry leaders, technical experts, academics, practitioners, representatives from the financial community, and environmental, social, and governance (ESG) leaders. This year's symposium is titled "Synergizing Innovation and Collaboration: Transforming Energy for a Sustainable Future."

This event begins Monday, September 8 at Houston Marriott Sugar Land. Click here to register.

September 15-19 — Houston Energy & Climate Week

Houston Energy & Climate Week utilizes Houston's potential to propel global climate action. This gathering welcomes an unparalleled selection of global energy leaders and communities, giving participants opportunities to interact and discuss capital, technology, workforce, and policy needs. It is organized by Allies in Energy, a nonprofit dedicated to building energy and climate literacy and a pathway to the workforce of the future.

Following an invite-only dinner on Sunday, September 14, this event begins with Opening Ceremonies on Monday, September 15. Click here for details.

September 15-19 — Houston Energy + Climate Startup Week

Launched in 2024, the official Houston Energy and Climate Startup Week returns for its second year, showcasing how Houston is developing and scaling real solutions for the dual challenge of meeting growing global energy demand while reducing carbon emissions. Join leading energy and climate venture capital investors, industry leaders, and startups from around the world for this showcase of the most innovative companies and technologies that are transforming the energy industry while driving a sustainable, low-carbon energy future.

This event begins Monday, September 15 with a kickoff event at the Ion Plaza. Click here for details.

September 16 — Pilotathon 2025 & Company Showcase

EnergyTech Nexus hosts its annual Pilotathon — a high-impact event designed to fast-track pilot deployments for climate and energy tech startups. Expect a full day of curated startup pitches, a 50-plus company innovation showcase, and direct engagement with corporate partners, investors, and ecosystem leaders. The afternoon will also feature participants from the ETN CoPilot Accelerator. Startup applications and event registration is now open at www.pilotathon.com.

This event takes place Tuesday, September 16 at 8 am at GreenStreet. Click here to register.

September 18 — ACCEL Year 3 Showcase

As part of Houston Energy and Climate Startup Week, Greentown Labs will celebrate ACCEL, an accelerator program for startups led by BIPOC and other underrepresented founders. The third ACCEL cohort will present a showcase featuring their technologies, what they’ve accomplished in the first six months of the program, and where they’re headed next. Attendees will also have the opportunity to network with industry leaders who are passionate about and building an inclusive and sustainable future.

This event takes place Thursday, September 18 at 5 pm at Greentown Labs. Click here to register.

Greentown Labs adds 6 Texas clean energy startups to Houston incubator

green team

Greentown Labs announced the six startups to join its Houston community in Q2 of 2025.

The companies are among a group of 13 that joined the climatetech incubator, which is co-located in Houston and Boston, in the same time period. The companies that joined the Houston-based lab specialize in a number of clean energy applications, from long-duration energy storage systems to 3D solar towers.

The new Houston members include:

  • Encore CO2, a Louisiana-based company that converts CO2 into ethanol, acetate, ethylene and other sustainable chemicals through its innovative electrolysis technology
  • Janta Power, a Dallas-based company with proprietary 3D-solar-tower technology that deploys solar power vertically rather than flatly, increasing power and energy generation
  • Licube, an Austin-based company focused on sustainable lithium recovery from underutilized sources using its proprietary and patented electrodialysis technology
  • Newfound Materials, a Houston-based company that has developed a predictive engine for materials R&D
  • Pix Force, a Houston-based company that develops AI algorithms to inspect substations, transmission lines and photovoltaic plants using drones
  • Wattsto Energy, a Houston-based manufacturer of a long-duration-energy-storage system with a unique hybrid design that provides fast, safe, sustainable and cost-effective energy storage at the microgrid and grid levels

Seven other companies will join Greentown Boston's incubator. See the full list here.

Greentown Houston also added five startups to its local lab in Q1. Read more about the companies here.

How Planckton Data is building the sustainability label every industry will need

now streaming

There’s a reason “carbon footprint” became a buzzword. It sounds like something we should know. Something we should measure. Something that should be printed next to the calorie count on a label.

But unlike calories, a carbon footprint isn’t universal, standardized, or easy to calculate. In fact, for most companies—especially in energy and heavy industry—it’s still a black box.

That’s the problem Planckton Data is solving.

On this episode of the Energy Tech Startups Podcast, Planckton Data co-founders Robin Goswami and Sandeep Roy sit down to explain how they’re turning complex, inconsistent, and often incomplete emissions data into usable insight. Not for PR. Not for green washing. For real operational and regulatory decisions.

And they’re doing it in a way that turns sustainability from a compliance burden into a competitive advantage.

From calories to carbon: The label analogy that actually works

If you’ve ever picked up two snack bars and compared their calorie counts, you’ve made a decision based on transparency. Robin and Sandeep want that same kind of clarity for industrial products.

Whether it’s a shampoo bottle, a plastic feedstock, or a specialty chemical—there’s now consumer and regulatory pressure to know exactly how sustainable a product is. And to report it.

But that’s where the simplicity ends.

Because unlike food labels, carbon labels can’t be standardized across a single factory. They depend on where and how a product was made, what inputs were used, how far it traveled, and what method was used to calculate the data.

Even two otherwise identical chemicals—one sourced from a refinery in Texas and the other in Europe—can carry very different carbon footprints, depending on logistics, local emission factors, and energy sources.

Planckton’s solution is built to handle exactly this level of complexity.

AI that doesn’t just analyze

For most companies, supply chain emissions data is scattered, outdated, and full of gaps.

That’s where Planckton’s use of AI becomes transformative.

  • It standardizes data from multiple suppliers, geographies, and formats.
  • It uses probabilistic models to fill in the blanks when suppliers don’t provide details.
  • It applies industry-specific product category rules (PCRs) and aligns them with evolving global frameworks like ISO standards and GHG Protocol.
  • It helps companies model decarbonization pathways, not just calculate baselines.

This isn’t generative AI for show. It’s applied machine learning with a purpose: helping large industrial players move from reporting to real action.

And it’s not a side tool. For many of Planckton’s clients, it’s becoming the foundation of their sustainability strategy.

From boardrooms to smokestacks: Where the pressure is coming from

Planckton isn’t just chasing early adopters. They’re helping midstream and upstream industrial suppliers respond to pressure coming from two directions:

  1. Downstream consumer brands—especially in cosmetics, retail, and CPG—are demanding footprint data from every input supplier.
  2. Upstream regulations—especially in Europe—are introducing reporting requirements, carbon taxes, and supply chain disclosure laws.

The team gave a real-world example: a shampoo brand wants to differentiate based on lower emissions. That pressure flows up the value chain to the chemical suppliers. Who, in turn, must track data back to their own suppliers.

It’s a game of carbon traceability—and Planckton helps make it possible.

Why Planckton focused on chemicals first

With backgrounds at Infosys and McKinsey, Robin and Sandeep know how to navigate large-scale digital transformations. They also know that industry specificity matters—especially in sustainability.

So they chose to focus first on the chemicals sector—a space where:

  • Supply chains are complex and often opaque.
  • Product formulations are sensitive.
  • And pressure from cosmetics, packaging, and consumer brands is pushing for measurable, auditable impact data.

It’s a wedge into other verticals like energy, plastics, fertilizers, and industrial manufacturing—but one that’s already showing results.

Carbon accounting needs a financial system

What makes this conversation unique isn’t just the product. It’s the co-founders’ view of the ecosystem.

They see a world where sustainability reporting becomes as robust as financial reporting. Where every company knows its Scope 1, 2, and 3 emissions the way it knows revenue, gross margin, and EBITDA.

But that world doesn’t exist yet. The data infrastructure isn’t there. The standards are still in flux. And the tooling—until recently—was clunky, manual, and impossible to scale.

Planckton is building that infrastructure—starting with the industries that need it most.

Houston as a launchpad (not just a legacy hub)

Though Planckton has global ambitions, its roots in Houston matter.

The city’s legacy in energy and chemicals gives it a unique edge in understanding real-world industrial challenges. And the growing ecosystem around energy transition—investors, incubators, and founders—is helping companies like Planckton move fast.

“We thought we’d have to move to San Francisco,” Robin shares. “But the resources we needed were already here—just waiting to be activated.”

The future of sustainability is measurable—and monetizable

The takeaway from this episode is clear: measuring your carbon footprint isn’t just good PR—it’s increasingly tied to market access, regulatory approval, and bottom-line efficiency.

And the companies that embrace this shift now—using platforms like Planckton—won’t just stay compliant. They’ll gain a competitive edge.

Listen to the full conversation with Planckton Data on the Energy Tech Startups Podcast:

Hosted by Jason Ethier and Nada Ahmed, the Digital Wildcatters’ podcast, Energy Tech Startups, delves into Houston's pivotal role in the energy transition, spotlighting entrepreneurs and industry leaders shaping a low-carbon future.