David Gow has been named president and CEO of the Center for Houston's Future, succeeding Brett Perlman who's focusing on the organization's hydrogen mission. Photos courtesy

A nonprofit organization dedicated to leading Houston into the future has named its next leader.

The Center for Houston’s Future named David Gow as president and CEO, succeeding Brett Perlman, who was announced in April to be remaining at the Center with a focus on the Center’s hydrogen initiative. Gow is the founder and chairman of Gow Media, EnergyCapital's parent company. His role is effective September 3.

“I am excited to step into this opportunity with the Center and work with the team, the board and many other stakeholders to help shape Houston’s future,” Gow says in a news release. “The Center presents an exciting opportunity to cast a vision for our region and identify initiatives that will make an impact.”

Gow — whose career includes a portfolio of online media properties and ESPN Radio — is a board member of Goose Capital and chair of MSAI, an entity he formed through a SPAC acquisition. Before he founded Gow Media, he served as CFO and CEO of an online watch retailer, Ashford.com. Prior to Ashford, Gow was director of corporate strategy at Compaq Computers and a consultant at McKinsey & Co. He received his master’s in public policy from Harvard and his bachelor's in economics from Williams College.

“David’s portfolio of experiences and skills, record of innovation and success, and deep commitment to the Houston community make him the perfect fit to lead the Center as we chart and execute on our next set of initiatives focused on ensuring a bright future for all residents in the Houston region,” adds Center for Houston’s Future Board Chair Cindy Yeilding.

In his new role, Gow will lead the Center’s next effort, Vision 2050, which plans to identify the city's key issues, gaps, and opportunities.

“Today’s announcement also reflects the success of the Center’s clean hydrogen program,” Yeilding continues. “On behalf of the Center’s board, I’d also like to recognize Brett for launching and building such a successful and important effort as well as his overall leadership and record of achievement at the Center these past seven years.”

———

This article originally ran on InnovationMap.

An Austin-based energy software company just scored funding from Houston investors. Photo via Getty Images

Houston VCs back energy software startup in $3.25M seed round

fresh funding

Houston-based investment firm Goose Capital led a $3.25 million round of seed funding revealed recently by Austin-based cleantech software company P6 Technologies.

Other participants in the round are Houston-based investment firms Artemis Energy Partners, Tupper Lake Partners, and Veritec Ventures. The seed round represents the first outside funding for P6, which maintains an office in Houston.

In conjunction with the seed funding:

  • Artemis founder and CEO Bobby Tudor has joined P6’s board of directors. He is an investor in Goose Capital.
  • Paal Kibsgaard, managing partner of Veritec, also has joined the P6 board. Kibsgaard is former chairman and CEO of Houston-based oilfield services company Schlumberger, which now does business as SLB.

Joe Berti, CEO of P6, says Kibsgaard’s “unparalleled experience” will benefit his company.

“Veritec’s strategic vision and active support of energy transition solutions align perfectly with our goals, and I am confident their contribution will be instrumental in shaping our future success,” Berti says in a news release.

Berti is former chief product officer of IBM’s sustainability software unit.

P6, founded in 2022, sells enterprise software to businesses in the energy, transportation fuel, and petrochemical sectors. The startup’s software for product lifecycle assessment enables measurement of the product-level intensity of greenhouse gas (GHG) emissions as energy companies try to achieve sustainability goals.

Tudor applauds P6 for helping fossil fuel-anchored companies reduce GHG emissions.

“Energy is the sector that needs a solution like P6 the most,” says Tudor. “P6 has the right approach and is going to make a step-change improvement to how product-level carbon intensity and GHG emissions are tracked today.”

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Tackling methane in the energy transition: Takeaways from Global Methane Hub and HETI

The view from heti

Leaders from across the energy value chain gathered in Houston for a roundtable hosted by the Global Methane Hub (GMH) and the Houston Energy Transition Initiative (HETI). The session underscored the continued progress to reduce methane emissions as the energy industry addresses the dual challenge of producing more energy that the world demands while simultaneously reducing emissions.

The Industry’s Shared Commitment and Challenge

There’s broad recognition across the industry that methane emissions must be tackled with urgency, especially as natural gas demand is projected to grow 3050% by 2050. This growth makes reducing methane leakage more than a sustainability issue—it’s also a matter of global market access and investor confidence.

Solving this issue, however, requires overcoming technical challenges that span infrastructure, data acquisition, measurement precision, and regulatory alignment.

Getting the Data Right: Top-Down vs. Bottom-Up

Accurate methane leak monitoring and quantification is the cornerstone of any effective mitigation strategy. A key point of discussion was the differentiation between top-down and bottom-up measurement approaches.

Top-down methods such as satellite and aerial monitoring offer broad-area coverage and can identify large emission plumes. Technologies such as satellite-based remote sensing (e.g., using high-resolution imagery) or airborne methane surveys (using aircraft equipped with tunable diode laser absorption spectroscopy) are commonly used for wide-area detection. While these methods are efficient for identifying large-scale emission hotspots, their accuracy is lower when it comes to quantifying emissions at the source, detecting smaller, diffuse leaks, and providing continuous monitoring.

In contrast, bottom-up methods focus on direct, on-site detection at the equipment level, providing more granular and precise measurements. Technologies used here include optical gas imaging (OGI) cameras, flame ionization detectors (FID), and infrared sensors, which can directly detect methane at the point of release. These methods are more accurate but can be resource and infrastructure intensive, requiring frequent manual inspections or continuous monitoring installations, which can be costly and technically challenging in certain environments.

The challenge lies in combining both methods: top-down for large-scale monitoring and bottom-up for detailed, accurate measurements. No single technology is perfect or all-inclusive. An integrated approach that uses both datasets will help to create a more comprehensive picture of emissions and improve mitigation efforts.

From Detection to Action: Bridging the Gap

Data collection is just the first step—effective action follows. Operators are increasingly focused on real-time detection and mitigation. However, operational realities present obstacles. For example, real-time leak detection and repair (LDAR) systems—particularly for continuous monitoring—face challenges due to infrastructure limitations. Remote locations like the Permian Basin may lack the stable power sources needed to run continuous monitoring equipment to individual assets.

Policy, Incentives, and Regulatory Alignment

Another critical aspect of the conversation was the need for policy incentives that both promote best practices and accommodate operational constraints. Methane fees, introduced to penalize emissions, have faced widespread resistance due to their design flaws that in many cases actually disincentivize methane emissions reductions. Industry stakeholders are advocating for better alignment between policy frameworks and operational capabilities.

In the United States, the Subpart W rule, for example, mandates methane reporting for certain facilities, but its implementation has raised concerns about the accuracy of some of the new reporting requirements. Many in the industry continue to work with the EPA to update these regulations to ensure implementation meets desired legislative expectations.

The EU’s demand for quantified methane emissions for imported natural gas is another driving force, prompting a shift toward more detailed emissions accounting and better data transparency. Technologies that provide continuous, real-time monitoring and automated reporting will be crucial in meeting these international standards.

Looking Ahead: Innovation and Collaboration

The roundtable highlighted the critical importance of advancing methane detection and mitigation technologies and integrating them into broader emissions reduction strategies. The United States’ 45V tax policy—focused on incentivizing production of low-carbon intensity hydrogen often via reforming of natural gas—illustrates the growing momentum towards science-based accounting and transparent data management. To qualify for 45V incentives, operators can differentiate their lower emissions intensity natural gas by providing foreground data to the EPA that is precise and auditable, essential for the industry to meet both environmental and regulatory expectations. Ultimately, the success of methane reduction strategies depends on collaboration between the energy industry, technology providers, and regulators.

The roundtable underscored that while significant progress has been made in addressing methane emissions, technical, regulatory, and operational challenges remain. Collaboration across industry, government, and technology providers is essential to overcoming these barriers. With better data, regulatory alignment, and investments in new technologies, the energy sector can continue to reduce methane emissions while supporting global energy demands.

———

HETI thanks Chris Duffy, Baytown Blue Hydrogen Venture Executive, ExxonMobil; Cody Johnson, CEO, SCS Technologies; and Nishadi Davis, Head of Carbon Advisory Americas, wood plc, for their participation in this event.

This article originally appeared on the Greater Houston Partnership's Houston Energy Transition Initiative blog. HETI exists to support Houston's future as an energy leader. For more information about the Houston Energy Transition Initiative, EnergyCapitalHTX's presenting sponsor, visit htxenergytransition.org.

Houston battery recycling company signs 15-year deal to supply Texas flagship facility

green team

Houston- and Singapore-headquartered Ace Green Recycling, a provider of sustainable battery recycling technology solutions, has secured a 15-year battery material supply agreement with Miami-based OM Commodities.

The global commodities trading firm will supply Ace with at least 30,000 metric tons of lead scrap annually, which the company expects to recycle at its planned flagship facility in Texas. Production is expected to commence in 2026.

"We believe that Ace's future Texas facility is poised to play a key role in addressing many of the current challenges in the lead industry in the U.S., while helping the country meet the growing domestic demand for valuable battery materials," Nishchay Chadha, CEO and co-founder of Ace, said in a news release. "This agreement with OM Commodities will provide us with enough supply to support our Texas facility during all of its current planned phases, enabling us to achieve optimal efficiencies as we deploy our solutions in the U.S. market. With OM Commodities being a U.S.-based leader in metals doing business across the Americas and Asia with a specialty in lead batteries, we look forward to leveraging their expertise in the space as we advance our scale-up efforts."

The feedstock will be sufficient to cover 100 percent of Ace's phase one recycling capacity at the Texas facility, according to the statement. The companies are also discussing future lithium battery recycling collaborations.

"Ace is a true pioneer when it comes to providing an environmentally friendly and economically superior solution to recycle valuable material from lead scrap," Yiannis Dumas, president of OM Commodities, added in the news release. "We look forward to supporting Ace with lead feedstock as they scale up their operations in Texas and helping create a more circular and sustainable battery materials supply chain in the U.S."

Additionally, ACE shared that it is expected to close a merger with Athena Technology Acquisition Corp. II (NYSE: ATEK) in the second half of 2025, after which Ace will become a publicly traded company on the Nasdaq Stock Market under the ticker symbol "AGXI."

"As we continue to scale our lead and lithium battery recycling technologies to help support the markets for both internal combustion engines and electric vehicles, we expect that our upcoming listing will be a key accelerator of growth for Ace,” Chada said.

China-based company to launch its largest U.S. energy storage project in Houston

coming soon

Trina Storage and FlexGen, a North Carolina-based company that develops integrated energy storage systems, are bringing a 371-megawatt battery energy storage system to Houston. The project will be the largest grid-scale deployment project in North America by Trina Storage, which is a business unit of China-based Trina Solar.

"This project is a testament to Trina Storage's ability to provide a fully bankable, integrated energy storage solution that meets the evolving needs of the market," Terry Chen, vice president of Trina Storage North America, said in a news release. "As our first grid-scale deployment in North America, this achievement reflects the industry's confidence in our technology and our commitment to de-risking energy storage investments and supporting the energy transition in the region."

The project, developed by Boulder, Colorado-based SMT Energy, will utilize Trina Storage's advanced Elementa 2 battery storage system, which is designed to optimize energy performance and reliability. The system uses Trinas proprietary lithium iron phosphate cells that are more than 95 percent energy efficient, according to the company.

FlexGen will provide system integration and use its HybridOS energy management software. The HybridOS allows site operators to manage systems, detect issues faster and predict maintenance needs.

"This collaboration with Trina Storage and SMT Energy represents another major step in accelerating the deployment of flexible energy storage assets to meet growing demand," Diane Giacomozzi, COO at FlexGen, added in the release. "By pre-integrating FlexGen HybridOS with Trina's Elementa 2 energy storage solution in our Durham Innovation Lab, we're enabling faster project delivery and optimized performance from the first moment of operation."

Trina Storage currently has 10 energy storage facilities in China and two in the UK. The Houston facility is part of its plans to expand across the U.S., according to a LinkedIn post form the company.