A barge hit a bridge in Galveston, resulting in an oil spill. No injuries were reported. Photo via portofgalveston.com

A barge slammed into a bridge pillar in Galveston, Texas, on Wednesday, spilling oil into waters near busy shipping channels and closing the only road to a small neighboring island. No injuries were reported.

The impact sent pieces of the bridge, which connects Galveston to Pelican Island, tumbling on top of the barge and shut down a stretch of waterway so crews could clean up the spill. The accident knocked one man off the vessel and into the water, but he was quickly recovered and was not injured, said Galveston County Sheriff’s Office Maj. Ray Nolen.

Ports along the Texas coast are hubs of international trade, but experts said the collision was unlikely to result in serious economic disruptions since it occurred in a lesser-used waterway. The island is on the opposite side of Galveston Island’s beaches that draw millions of tourists each year.

The accident happened shortly before 10 a.m. after a tugboat operator pushing two barges lost control of them, said David Flores, a bridge superintendent with the Galveston County Navigation District.

“The current was very bad, and the tide was high," Flores said. “He lost it.”

Pelican Island is only a few miles wide and is home to Texas A&M University at Galveston, a large shipyard and industrial facilities. Fewer than 200 people were on the campus when the collision happened, and all were eventually allowed to drive on the bridge to leave. The marine and maritime research institute said it plans to remain closed until at least Friday. Students who live on campus were allowed to remain there, but university officials warned those who live on campus and leave “should be prepared to remain off campus for an unknown period of time.”

The accident came weeks after a cargo ship crashed into a support column of the Francis Key Bridge in Baltimore on March 26, killing six construction workers.

The tugboat in Texas was pushing bunker barges, which are fuel barges for ships, Flores said. The barge, which is owned by Martin Petroleum, has a 30,000-gallon capacity, but it's not clear how much leaked into the bay, said Galveston County spokesperson Spencer Lewis. He said about 6.5 miles (10.5 kilometers) of the waterway were shut down because of the spill.

The affected area is miles away from the Gulf Intracoastal Waterway, which sees frequent barge traffic, and the Houston Ship Channel, a large shipping channel for ocean-going vessels. Aside from the environmental impact of the spill, the region is unlikely to see large economic disruption as a result of the accident, said Marcia Burns, a maritime transportation expert at the University of Houston

“Because Pelican Island is a smaller location, which is not in the heart of commercial events, then the impact is not as devastating," Burns said. “It’s a relatively smaller impact.”

At the bridge, a large piece of broken concrete and debris from the railroad hung over the side and on top of the barge that rammed into the passageway. Flores said the rail line only serves as protection for the structure and has never been used.

Opened in 1960, the Pelican Island Causeway Bridge was rated as “Poor” according to the Federal Highway Administration’s 2023 National Bridge Inventory released last June.

The overall rating of a bridge is based on whether the condition of any of its individual components — the deck, superstructure, substructure or culvert, if present — is rated poor or below.

In the case of the Pelican Island Causeway Bridge, inspectors rated the deck in “Satisfactory Condition,” the substructure in “Fair Condition” and the superstructure — or the component that absorbs the live traffic load — in “Poor Condition.”

The Texas Department of Transportation had been scheduled in the summer of 2025 to begin construction on a project to replace the bridge with a new one. The project was estimated to cost $194 million. In documents provided during a virtual public meeting last year, the department said the bridge has “reached the end of its design lifespan, and needs to be replaced.” The agency said it has spent over $12 million performing maintenance and repairs on the bridge in the past decade.

The bridge has one main steel span that measures 164 feet (50 meters), and federal data shows it was last inspected in December 2021. It’s unclear from the data if a state inspection took place after the Federal Highway Administration compiled the data.

The bridge had an average daily traffic figure of about 9,100 cars and trucks, according to a 2011 estimate.

___

Lozano reported from Houston. Associated Press reporters Christopher L. Keller in Albuquerque, New Mexico; Valerie Gonzalez in McAllen, Texas; Acacia Coronado in Austin, Texas; and Ken Miller in Oklahoma City contributed to this report.

Galveston residents spend 14 percent more a month on electricity, and CenterPoint stepped in to help shrink that gap. Photo courtesy of Vision Galveston

Houston utility provider gifts $100,000 for energy-efficient upgrades in Galveston

island improvements

As Texas bakes in scorching summertime heat, a new program has been rolled out in Galveston to provide free energy-efficiency upgrades of homes.

The program, a collaboration between the nonprofit Vision Galveston and Houston-based CenterPoint Energy, is designed to reduce energy consumption and cut utility bills through projects like HVAC tune-ups, as well as installation of ceiling insulation, LED light bulbs, solar screens, and low-flow showerheads.

The program launched July 13 with three CenterPoint customers, all residents of Galveston’s Old Central Carver Park neighborhood, receiving energy-efficiency upgrades.

All residents of Galveston are eligible for the program but must meet certain requirements, such as having:

  • A valid ESID number, or electric service identifier, in CenterPoint’s Houston-area territory.
  • A central AC system or heat pump that’s at least a year old and is in good working order.
  • A residential AC system that’s no larger than five tons.

Data from EnergySage shows the average Galveston resident spends $195 a month on electricity. That’s 14 percent higher than the national average.

“Without properly equipped homes to withstand Texas’ above-average temperatures and other extreme weather conditions, [these costs] could increase over time, greatly impacting islanders during the hot summer months,” the program’s organizers say. “And this could be a significant financial burden for families that are already economically challenged.”

In tandem with the new program, the CenterPoint Energy Foundation has donated $100,000 to Vision Galveston to support future energy-efficiency programs benefiting income-qualified residents of Galveston.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Rice University spinout lands $500K NSF grant to boost chip sustainability

cooler computing

HEXAspec, a spinout from Rice University's Liu Idea Lab for Innovation and Entrepreneurship, was recently awarded a $500,000 National Science Foundation Partnership for Innovation grant.

The team says it will use the funding to continue enhancing semiconductor chips’ thermal conductivity to boost computing power. According to a release from Rice, HEXAspec has developed breakthrough inorganic fillers that allow graphic processing units (GPUs) to use less water and electricity and generate less heat.

The technology has major implications for the future of computing with AI sustainably.

“With the huge scale of investment in new computing infrastructure, the problem of managing the heat produced by these GPUs and semiconductors has grown exponentially. We’re excited to use this award to further our material to meet the needs of existing and emerging industry partners and unlock a new era of computing,” HEXAspec co-founder Tianshu Zhai said in the release.

HEXAspec was founded by Zhai and Chen-Yang Lin, who both participated in the Rice Innovation Fellows program. A third co-founder, Jing Zhang, also worked as a postdoctoral researcher and a research scientist at Rice, according to HEXAspec's website.

The HEXASpec team won the Liu Idea Lab for Innovation and Entrepreneurship's H. Albert Napier Rice Launch Challenge in 2024. More recently, it also won this year's Energy Venture Day and Pitch Competition during CERAWeek in the TEX-E student track, taking home $25,000.

"The grant from the NSF is a game-changer, accelerating the path to market for this transformative technology," Kyle Judah, executive director of Lilie, added in the release.

---

This article originally ran on InnovationMap.

Rice research team's study keeps CO2-to-fuel devices running 50 times longer

new findings

In a new study published in the journal Science, a team of Rice University researchers shared findings on how acid bubbles can improve the stability of electrochemical devices that convert carbon dioxide into useful fuels and chemicals.

The team led by Rice associate professor Hoatian Wang addressed an issue in the performance and stability of CO2 reduction systems. The gas flow channels in the systems often clog due to salt buildup, reducing efficiency and causing the devices to fail prematurely after about 80 hours of operation.

“Salt precipitation blocks CO2 transport and floods the gas diffusion electrode, which leads to performance failure,” Wang said in a news release. “This typically happens within a few hundred hours, which is far from commercial viability.”

By using an acid-humidified CO2 technique, the team was able to extend the operational life of a CO2 reduction system more than 50-fold, demonstrating more than 4,500 hours of stable operation in a scaled-up reactor.

The Rice team made a simple swap with a significant impact. Instead of using water to humidify the CO2 gas input into the reactor, the team bubbled the gas through an acid solution such as hydrochloric, formic or acetic acid. This process made more soluble salt formations that did not crystallize or block the channels.

The process has major implications for an emerging green technology known as electrochemical CO2 reduction, or CO2RR, that transforms climate-warming CO2 into products like carbon monoxide, ethylene, or alcohols. The products can be further refined into fuels or feedstocks.

“Using the traditional method of water-humidified CO2 could lead to salt formation in the cathode gas flow channels,” Shaoyun Hao, postdoctoral research associate in chemical and biomolecular engineering at Rice and co-first author, explained in the news release. “We hypothesized — and confirmed — that acid vapor could dissolve the salt and convert the low solubility KHCO3 into salt with higher solubility, thus shifting the solubility balance just enough to avoid clogging without affecting catalyst performance.”

The Rice team believes the work can lead to more scalable CO2 electrolyzers, which is vital if the technology is to be deployed at industrial scales as part of carbon capture and utilization strategies. Since the approach itself is relatively simple, it could lead to a more cost-effective and efficient solution. It also worked well with multiple catalyst types, including zinc oxide, copper oxide and bismuth oxide, which are allo used to target different CO2RR products.

“Our method addresses a long-standing obstacle with a low-cost, easily implementable solution,” Ahmad Elgazzar, co-first author and graduate student in chemical and biomolecular engineering at Rice, added in the release. “It’s a step toward making carbon utilization technologies more commercially viable and more sustainable.”

A team led by Wang and in collaboration with researchers from the University of Houston also shared findings on salt precipitation buildup and CO2RR in a recent edition of the journal Nature Energy. Read more here.