Scott Nyquist on the future of technology and how they affect the energy industry. Photo via Getty Images

When smart people come together to consider the future, it’s worth listening to them.

Not long ago, McKinsey brought together more than 60 experts, and asked them to name the most important technology trends for business. They started from the premise that the next 10 years will see more technological progress than in the previous 100 years—and that this will up-end companies and industries everywhere.

“We believe the technology disruption over the next few years will be equal to the industrial revolution,” says Nicolaus Henke, a McKinsey alum who participated in this Tech Trends Index, which will be updated annually.

Here are some of the specific predictions. More than three-quarters of enterprise-generated data will be processed by edge or cloud computing by 2025. Ten percent of global GDP could be associated with blockchain by 2027. Renewables will produce 75 percent of global energy by 2050. 5G could reach 80 percent of the world’s population by 2030.

Time will tell if any or all of these are right; personally, I think renewables will have to wait a little longer for that kind of dominance. But by and large, I found the list, and the underlying thinking, compelling. And given my background in oil-and-gas, I thought it was striking that parts of the energy industry are working on just about every single one of them. Here is the list:

  • Next-level process automation and visualization.
  • Future of connectivity.
  • Distributed infrastructure.
  • Next-generation computing.
  • Applied artificial intelligence (AI).
  • Future of programming.
  • Trust architecture.
  • Bio revolution.
  • Next-generation materials.
  • Future of clean technologies.

Specifically, the first half-dozen items are all connected to digitization, and while the energy industry may not be at the cutting edge of development, it has a long track record of integrating these technologies and safely deploying them in order to deliver low-cost and reliable supply.

For example, the oil and gas industry has used AI for years to evaluate reservoirs and to plan drilling—one of many improvements over the traditional “one rock, two geologists, three opinions" way of doing things. And advanced materials, such as composites, engineered polymers, and low-density/high-strength metals and alloys are commonly used to lower costs and improve performance, for example in deep water oil and gas production and rotating equipment. As for connectivity, there is no shortage of commitment, but I think it is fair to say that the full potential has not been tapped.

McKinsey has estimated that making use of advanced connectivity alone—to optimize drilling and production, as well as to improve maintenance and field operations—could translate into $250 billion in value by 2030. That is something that the industry could really use, given recent price fluctuations. Taken as a whole, while the industry is nowhere near completing a full digital transformation, it is certainly well on its way.

As for the item most clearly connected to the industry — No. 10, clean technologies — at first glance, this might seem like bad news for traditional energy players. Not so fast. There are clear opportunities in areas such as clean coal, carbon capture, and energy storage. Moreover, other kinds of clean technologies can help the industry decarbonize its operations—something that will become more important as carbon regulation gets more stringent.

As I see it, then, while parts of the industry may seem old-school, it is actually heavily engaged in almost everything on the list. That should come as no surprise. From the first time oil was pumped in Pennsylvania in 1859, it has innovated and adapted to integrate technologies that improved productivity, safety, and environmental performance. In fact, it could it could even be said that the sector is part of what is often known as the Fourth Industrial Revolution—the convergence and interaction of physical, digital, and biological technologies.

I, and many others in the industry, believe that the ongoing energy transition will likely suppress demand for fossil fuels in the long term. But while the items on the Tech Trends Index, together and separately, will be disruptive, requiring big changes in business models and day-to-day operations, they could also help the industry to adapt.

———

Scott Nyquist is a senior advisor at McKinsey & Company and vice chairman, Houston Energy Transition Initiative of the Greater Houston Partnership. The views expressed herein are Nyquist's own and not those of McKinsey & Company or of the Greater Houston Partnership. This article originally ran on LinkedIn on October 4, 2021.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Wind and solar supplied over a third of ERCOT power, report shows

power report

Since 2023, wind and solar power have been the fastest-growing sources of electricity for the Electric Reliability Council of Texas (ERCOT) and increasingly are meeting stepped-up demand, according to a new report from the U.S. Energy Information Administration (EIA).

The report says utility-scale solar generated 50 percent more electricity for ERCOT in the first nine months this year compared with the same period in 2024. Meanwhile, electricity generated by wind power rose 4 percent in the first nine months of this year versus the same period in 2024.

Together, wind and solar supplied 36 percent of ERCOT’s electricity in the first nine months of 2025.

Heavier reliance on wind and solar power comes amid greater demand for ERCOT electricity. In the first nine months of 2025, ERCOT recorded the fastest growth in electricity demand (5 percent) among U.S. power grids compared with the same period last year, according to the report.

“ERCOT’s electricity demand is forecast to grow faster than that of any other grid operator in the United States through at least 2026,” the report says.

EIA forecasts demand for ERCOT electricity will climb 14 percent in the first nine months of 2026 compared with the same period this year. This anticipated jump coincides with a number of large data centers and cryptocurrency mining facilities coming online next year.

The ERCOT grid covers about 90 percent of Texas’ electrical load.

Micro-nuclear reactor to launch next year at Texas A&M innovation campus

nuclear pilot

The Texas A&M University System and Last Energy plan to launch a micro-nuclear reactor pilot project next summer at the Texas A&M-RELLIS technology and innovation campus in Bryan.

Washington, D.C.-based Last Energy will build a 5-megawatt reactor that’s a scaled-down version of its 20-megawatt reactor. The micro-reactor initially will aim to demonstrate safety and stability, and test the ability to generate electricity for the grid.

The U.S. Department of Energy (DOE) fast-tracked the project under its New Reactor Pilot Program. The project will mark Last Energy’s first installation of a nuclear reactor in the U.S.

Private funds are paying for the project, which Robert Albritton, chairman of the Texas A&M system’s board of regents, said is “an example of what’s possible when we try to meet the needs of the state and tap into the latest technologies.”

Glenn Hegar, chancellor of the Texas A&M system, said the 5-megawatt reactor is the kind of project the system had in mind when it built the 2,400-acre Texas A&M-RELLIS campus.

The project is “bold, it’s forward-looking, and it brings together private innovation and public research to solve today’s energy challenges,” Hegar said.

As it gears up to build the reactor, Last Energy has secured a land lease at Texas A&M-RELLIS, obtained uranium fuel, and signed an agreement with DOE. Founder and CEO Bret Kugelmass said the project will usher in “the next atomic era.”

In February, John Sharp, chancellor of Texas A&M’s flagship campus, said the university had offered land at Texas A&M-RELLIS to four companies to build small modular nuclear reactors. Power generated by reactors at Texas A&M-RELLIS may someday be supplied to the Electric Reliability Council of Texas (ERCOT) grid.

Also in February, Last Energy announced plans to develop 30 micro-nuclear reactors at a 200-acre site about halfway between Lubbock and Fort Worth.

Rice University partners with Australian co. to boost mineral processing, battery innovation

critical mineral partnership

Rice University and Australian mineral exploration company Locksley Resources have joined together in a research partnership to accelerate the development of antimony processing in the U.S. Antimony is a critical mineral used for defense systems, electronics and battery storage.

Rice and Locksley will work together to develop scalable methods for extracting and utilizing antimony. Currently, the U.S. relies on imports for nearly all refined antimony, according to Rice.

Locksley will fund the research and provide antimony-rich feedstocks and rare earth elements from a project in the Mojave Desert. The research will explore less invasive hydrometallurgical techniques for antimony extraction and explore antimony-based materials for use in batteries and other energy storage applications.

“This strategic collaboration with Rice marks a pivotal step in executing Locksley’s U.S. strategy,” Nathan Lude, chairman of Locksley Resources, said in a news release. “By fast-tracking our research program, we are helping rebuild downstream capacity through materials innovation that the country urgently requires.”

Pulickel Ajayan, the Benjamin M. and Mary Greenwood Anderson Professor of Materials Science and Nanoengineering at Rice, is the principal investigator of the project.

“Developing scalable, domestic pathways for antimony processing is not only a scientific and engineering challenge but also a national strategic priority,” Ajayan said in the news release. “By combining Rice’s expertise in advanced materials with Locksley’s resources, we can address a critical supply chain gap and build collaborations that strengthen U.S. energy resilience.”

The Rice Advanced Materials Institute (RAMI) will play a major role in supporting the advancement of technology and energy-storage applications.

“This partnership aligns with our mission to lead in materials innovations that address national priorities,” Lane Martin, director of RAMI, said in a news release. “By working with Locksley, we are helping to build a robust domestic supply chain for critical materials and support the advancement of next-generation energy technologies.”