The pilot project is a cornerstone of an extended agreement between ExxonMobil Technology and Engineering and Danbury, Connecticut-based clean energy company FuelCell Energy. Photo via exxonmobil.be

The Esso fuel business of Spring-based ExxonMobil is forging ahead with a pilot project at its Dutch refinery in Rotterdam to test technology aimed at reducing carbon emissions and simultaneously generating electricity and hydrogen.

The pilot project is a cornerstone of an extended agreement between ExxonMobil Technology and Engineering and Danbury, Connecticut-based clean energy company FuelCell Energy. The deal is now set to expire at the end of 2026.

ExxonMobil and FuelCell announced the pilot project in 2023.

“The unique advantage of this technology is that it not only captures CO2 but also produces low-carbon power, heat, and hydrogen as co-products,” Geoff Richardson, senior vice president of ExxonMobil Low Carbon Solutions, said last year.

The Rotterdam facility, which opened in 1960, will be the first location in the world to test the technology. The technology eventually could be rolled out at additional ExxonMobil sites.

The European Union is among the funders of the pilot project. FuelCell is making carbonate fuel cells for the project at its manufacturing plant in Torrington, Connecticut.

The extended agreement enables FuelCell to incorporate elements of the jointly developed technology into carbon capture products currently being marketed to customers. ExxonMobil and FuelCell are working on formalizing an arrangement for selling the new technology.

“The technology, which captures carbon while simultaneously generating electricity and hydrogen, could improve the economics of carbon capture and could potentially lower the barrier to broader adoption of carbon capture in the marketplace,” according to a FuelCell news release.

FuelCell says its 10-year partnership with ExxonMobil has focused on developing technology that reduces carbon emissions from emission-intensive sectors while generating electricity and hydrogen in the process — “something that no other fuel cell technology or conventional absorption systems can do.”

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Hydrogen industry could have major impact on Texas water resources, study says

water works

Just as the data center industry thrives on electricity, the hydrogen industry thrives on water.

A new study from researchers at the University of Texas at Austin found that by 2050, new hydrogen production facilities could account for 2 percent to nearly 7 percent of water demand in the state. The impact could be especially dramatic along the Gulf Coast, where most of the state’s hydrogen production facilities are already built or are being planned.

The research was published in the journal Sustainability.

The study reported that "most existing and proposed hydrogen production infrastructures are within projected water-strained cities and counties, such as Houston in Harris County and Corpus Christi in Nueces County."

Compared with municipal water supplies or irrigation systems, the hydrogen industry’s demand for water is comparatively small, the study’s lead author, Ning Lin, an energy economist at UT’s Bureau of Economic Geology, said in a news release. But hydrogen-fueled demand could strain communities that already are grappling with current and future water shortages.

“Where you put a project can make a huge difference locally,” Lin says. “With multiple hydrogen facilities planned in water-stressed Gulf Coast counties, this study highlights the urgent need for integrated water and energy planning and provides a solid foundation to help policymakers, industry, and communities make informed decisions about hydrogen and water management.”

To forecast water demand, Lin and her colleagues crunched data from a 2024 National Petroleum Council study that estimated the regional hydrogen demand from 2030 to 2050 based on two energy policy scenarios.

As part of the study, researchers reviewed water use and water quality for various hydrogen production methods that affect whether water remaining from production can be recycled.

“In order to plan for water needs, somebody has to figure out what those future demands might look like, and this paper puts some numbers to (it) that, I think, will be very helpful,” Robert Mace, executive director of the Meadows Center for Water and the Environment at Texas State University, who was not part of the study, added in the release.

Co-founder of Houston hypersonic engine co. lands on Inc. 500 list

Ranking It

Five Houston female founders have been recognized by Inc. Magazine for their innovation, including Sassie Duggleby, the CEO and co-founder of groundbreaking space tech and engine company Venus Aerospace.

The women were named to Inc.'s Female Founders 500 list, which features female entrepreneurs based in the U.S. The group attracted approximately $9 billion in 2024 revenue and $10.6 billion in funding, according to Inc.

“Female founders know what struggle is, but they’re also experts of improvisation, adaptability, and creativity. The women featured on this year’s list exemplify these qualities," Diana Ransom, Inc. executive editor said in a release. "Through times of uncertainty, their unwavering dedication and steadfast leadership are not only inspiring but vital to driving progress.”

Venus Aerospace is the Houston-based company that is developing reusable hypersonic technology that it hopes "will revolutionize and redefine the boundaries of aviation, defense, and beyond." The company won the in the Deep Tech Business category in the 2024 Houston Innovation Awards. Duggleby also serves on the Texas Space Commission board of directors.

Duggleby is joined by four other Houston founders:

  • Stephanie Murphy, CEO and executive chairman of Aegis Aerospace, which provides space services, spaceflight product development, and engineering services. Murphy also serves on the Texas Aerospace Research and Space Economy Consortium Executive Committee.
  • Emily Cisek, founder of The Postage, now known as Paige, a comprehensive life planning and succession software platform for families and small businesses. The company won the Female-Owned Business category in the 2023 Houston Innovation Awards.
  • Margo Jordan, founder of adolescent mental health startup Enrichly, which uses AI-driven self-esteem development and behavioral insights to boost student performance.
  • Nina Magon, founder of Nina Magon Studio / Nina Magon Consumer Products, a residential and commercial interior design company.
"While I don't know many of the ladies on this list, I do know they're some of the most tenacious role models in entrepreneurship. I'm beyond honored to be included among them," Duggleby said in a LinkedIn post.
Twenty-eight Texas female founders made this list, including Kendra Scott and Allison Ellsworth, co-founder of Poppi, and many others.

---

A version of this story first appeared on our sister site, InnovationMap.com.

Rice launches new center focused on membrane technology for energy conversion

new material

Rice University announced the formation of a new center focused on developing advanced membrane materials and separation technologies for the energy transition.

Known as the Rice Center for Membrane Excellence, or RiCeME, the center will aim to secure funding to develop more efficient and sustainable membrane separation practices and advance next-generation membrane materials, which are essential in energy conversion processes.

The center, part of Rice's Water Technologies Entrepreneurship and Research, or WaTER Institute, also plans to drive water reuse and resource recovery solutions, perform bench-scale testing and pilot-scale demonstrations, and even host workforce development workshops and symposia on membrane science and technology.

The announcement was made during the Rice Global Paris Center Symposium in Paris.

RiCeME will be led by Menachem Elimelech, the Nancy and Clint Carlson Professor in Civil and Environmental Engineering and Chemical and Biomolecular Engineering at Rice. His research focuses on membrane-based processes, advanced materials and nanotechnology.

“Houston is the ideal place to drive innovation in membrane separation technologies,” Elimelech said in a news release. “Membranes are critical for energy-related separations such as fuel cells, carbon capture and water purification. Our work will enhance efficiency and sustainability in these key sectors.”

RiCeME will work on building partnerships with Houston-area industries, including oil and gas, chemical, and energy sectors, according to the release. It will also rely on interdisciplinary research by engaging faculty from civil and environmental engineering, chemical and biomolecular engineering, materials science and nanoengineering, and chemistry departments at Rice.

“Breakthroughs in membrane technology will play a crucial role in addressing energy and sustainability challenges,” Ramamoorthy Ramesh, executive vice president for research at Rice, said in a news release. “RiCeME’s interdisciplinary approach ensures that our discoveries move from the lab to real-world applications, driving innovation at the intersection of science and industry.”.