The Austin, Texas, company supposedly fixed its self-driving software for more than 2 million vehicles, but the U.S. National Highway Traffic Safety Administration still has concerns. Photo courtesy of Tesla

Federal highway safety investigators want Austin-based Tesla to tell them how and why it developed the fix in a recall of more than 2 million vehicles equipped with the company's Autopilot partially automated driving system.

Investigators with the U.S. National Highway Traffic Safety Administration have concerns about whether the recall remedy worked because Tesla has reported 20 crashes since the remedy was sent out as an online software update in December.

The recall fix also was to address whether Autopilot should be allowed to operate on roads other than limited access highways. The fix for that was increased warnings to the driver on roads with intersections.

But in a letter to Tesla posted on the agency's website Tuesday, investigators wrote that they could not find a difference between warnings to the driver to pay attention before the recall and after the new software was released. The agency said it will evaluate whether driver warnings are adequate, especially when a driver-monitoring camera is covered.

The agency asked for volumes of information about how Tesla developed the fix, and zeroed in on how it used human behavior to test the recall effectiveness.

Phil Koopman, a professor at Carnegie Mellon University who studies automated driving safety, said the letter shows that the recall did little to solve problems with Autopilot and was an attempt to pacify NHTSA, which demanded the recall after more than two years of investigation.

“It’s pretty clear to everyone watching that Tesla tried to do the least possible remedy to see what they could get away with,” Koopman said. “And NHTSA has to respond forcefully or other car companies will start pushing out inadequate remedies.”

Safety advocates have long expressed concern that Autopilot, which can keep a vehicle in its lane and a distance from objects in front of it, was not designed to operate on roads other than limited access highways.

Missy Cummings, a professor of engineering and computing at George Mason University who studies automated vehicles, said NHTSA is responding to criticism from legislators for a perceived lack of action on automated vehicles.

“As clunky as our government is, the feedback loop is working,” Cummings said. “I think the NHTSA leadership is convinced now that this is a problem.”

The 18-page NHTSA letter asks how Tesla used human behavior science in designing Autopilot, and the company's assessment of the importance of evaluating human factors.

It also wants Tesla to identify every job involved in human behavior evaluation and the qualifications of the workers. And it asks Tesla to say whether the positions still exist.

A message was left by The Associated Press early Tuesday seeking comment from Tesla about the letter.

Tesla is in the process of laying off about 10% of its workforce, about 14,000 people, in an effort to cut costs to deal with falling global sales.

Cummings said she suspects that CEO Elon Musk would have laid off anyone with human behavior knowledge, a key skill needed to deploy partially automated systems like Autopilot, which can't drive themselves and require humans to be ready to intervene at all times.

“If you're going to have a technology that depends upon human interaction, you better have someone on your team that knows what they are doing in that space,” she said.

Cummings said her research has shown that once a driving system takes over steering from humans, there is little left for the human brain to do. Many drivers tend to overly rely on the system and check out.

“You can have your head fixed in one position, you can potentially have your eyes on the road, and you can be a million miles away in your head,” she said. “All the driver monitoring technologies in the world are still not going to force you to pay attention.”

In its letter, NHTSA also asks Tesla for information about how the recall remedy addresses driver confusion over whether Autopilot has been turned off if force is put on the steering wheel. Previously, if Autopilot was de-activated, drivers might not notice quickly that they have to take over driving.

The recall added a function that gives a “more pronounced slowdown” to alert drivers when Autopilot has been disengaged. But the recall remedy doesn’t activate the function automatically — drivers have to do it. Investigators asked how many drivers have taken that step.

NHTSA is asking Telsa “What do you mean you have a remedy and it doesn’t actually get turned on?” Koopman said.

The letter, he said, shows NHTSA is looking at whether Tesla did tests to make sure the fixes actually worked. “Looking at the remedy I struggled to believe that there’s a lot of analysis proving that these will improve safety,” Koopman said.

The agency also says Tesla made safety updates after the recall fix was sent out, including an attempt to reduce crashes caused by hydroplaning and to reduce collisions in high speed turn lanes. NHTSA said it will look at why Tesla didn't include the updates in the original recall.

NHTSA could seek further recall remedies, make Tesla limit where Autopilot can work, or even force the company to disable the system until it is fixed, safety experts said.

NHTSA began its Autopilot investigation in 2021, after receiving 11 reports that Teslas using Autopilot struck parked emergency vehicles. In documents explaining why the investigation was ended due to the recall, NHTSA said it ultimately found 467 crashes involving Autopilot resulting in 54 injuries and 14 deaths.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

What EPA’s carbon capture and storage permitting announcement means for Texas

The View From HETI

Earlier this month, Texas was granted authority by the federal government for permitting carbon capture and storage (CCS) projects. This move could help the U.S. cut emissions while staying competitive in the global energy game.

In June, the U.S. Environmental Protection Agency (EPA) proposed approving Texas’ request for permitting authority under the Safe Drinking Water Act (SDWA) for Class VI underground injection wells for carbon capture and storage (CCS) in the state under a process called “primacy.” The State of Texas already has permitting authority for other injection wells (Classes I-V). In November, the EPA announced final approval of Texas’ primacy request.

Why This Matters for Texas

Texas is the headquarters for virtually every segment of the energy industry. According to the U.S. Energy Information Administration, Texas is the top crude oil- and natural-gas producing state in the nation. The state has more crude oil refineries and refining capacity than any other state in the nation. Texas produces more electricity than any other state, and the demand for electricity will grow with the development of data centers and artificial intelligence (AI). Simply put, Texas is the backbone of the nation’s energy security and competitiveness. For the nation’s economic competitiveness, it is important that Texas continue to produce more energy with less emissions. CCS is widely regarded as necessary to continue to lower the emissions intensity of the U.S. industrial sector for critical products including power generation, refining, chemicals, steel, cement and other products that our country and world demand.

The Greater Houston Partnership’s Houston Energy Transition Initiative (HETI) has supported efforts to bring CCUS to a broader commercial scale since the initiative’s inception.

“Texas is uniquely positioned to deploy CCUS at scale, with world-class geology, a skilled workforce, and strong infrastructure. We applaud the EPA for granting Texas the authority to permit wells for CCUS, which we believe will result in safe and efficient permitting while advancing technologies that strengthen Texas’ leadership in the global energy market,” said Jane Stricker, Executive Director of HETI and Senior Vice President, Energy Transition at the Greater Houston Partnership.

What is Primacy, and Why is it Important?

Primacy grants permitting authority for Class VI wells for CCS to the Texas Railroad Commission instead of the EPA. Texas is required to follow the same strict standards the EPA uses. The EPA has reviewed Texas’ application and determined it meets those requirements.

Research suggests that Texas has strong geological formations for CO2 storage, a world-class, highly skilled workforce, and robust infrastructure primed for the deployment of CCS. However, federal permitting delays are stalling billions of dollars of private sector investment. There are currently 257 applications under review, nearly one-quarter of which are located in Texas, with some applications surpassing the EPA’s target review period of 24 months. This creates uncertainty for developers and investors and keeps thousands of potential jobs out of reach. By transferring permitting to the state, Texas will apply local resources to issue Class VI permits across the states in a timely manner.

Texas joins North Dakota, Wyoming, Louisiana, West Virginia and Arizona with the authority for regulating Class VI wells.

Is CCS safe?

A 2025 study by Texas A&M University reviewed operational history and academic literature on CCS in the United States. The study analyzed common concerns related to CCS efficacy and safety and found that CCS reduces pollutants including carbon dioxide, particulate matter, sulfur oxides and nitrogen oxides. The research found that the risks of CCS present a low probability of impacting human life and can be effectively managed through existing state and federal regulations and technical monitoring and safety protocols.

What’s Next?

The final rule granting Texas’ primacy will become effective 30 days after publication in the Federal Register. Once in effect, the Texas Railroad Commission will be responsible for permitting wells for carbon capture, use and storage and enforcing their safe operation.

———

This article originally ran on the Greater Houston Partnership's Houston Energy Transition Initiative blog. HETI exists to support Houston's future as an energy leader. For more information about the Houston Energy Transition Initiative, EnergyCapitalHTX's presenting sponsor, visit htxenergytransition.org.

Houston energy expert: How the U.S. can turn carbon into growth

Guets Column

For the past 40 years, climate policy has often felt like two steps forward, one step back. Regulations shift with politics, incentives get diluted, and long-term aspirations like net-zero by 2050 seem increasingly out of reach. Yet greenhouse gases continue to rise, and the challenges they pose are not going away.

This matters because the costs are real. Extreme weather is already straining U.S. power grids, damaging homes, and disrupting supply chains. Communities are spending more on recovery while businesses face rising risks to operations and assets. So, how can the U.S. prepare and respond?

The Baker Institute Center for Energy Studies (CES) points to two complementary strategies. First, invest in large-scale public adaptation to protect communities and infrastructure. Second, reframe carbon as a resource, not just a waste stream to be reduced.

Why Focusing on Emissions Alone Falls Short

Peter Hartley argues that decades of global efforts to curb emissions have done little to slow the rise of CO₂. International cooperation is difficult, the costs are felt immediately, and the technologies needed are often expensive. Emissions reduction has been the central policy tool for decades, and it has been neither sufficient nor effective.

One practical response is adaptation, which means preparing for climate impacts we can’t avoid. Some of these measures are private, taken by households or businesses to reduce their own risks, such as farmers shifting crop types, property owners installing fire-resistant materials, or families improving insulation. Others are public goods that require policy action. These include building stronger levees and flood defenses, reinforcing power grids, upgrading water systems, revising building codes, and planning for wildfire risks. Such efforts protect people today while reducing long-term costs, and they work regardless of the source of extreme weather. Adaptation also does not depend on global consensus; each country, state, or city can act in its own interest. Many of these measures even deliver benefits beyond weather resilience, such as stronger infrastructure and improved security against broader threats.

McKinsey research reinforces this logic. Without a rapid scale-up of climate adaptation, the U.S. will face serious socioeconomic risks. These include damage to infrastructure and property from storms, floods, and heat waves, as well as greater stress on vulnerable populations and disrupted supply chains.

Making Carbon Work for Us

While adaptation addresses immediate risks, Ken Medlock points to a longer-term opportunity: turning carbon into value.

Carbon can serve as a building block for advanced materials in construction, transportation, power transmission, and agriculture. Biochar to improve soils, carbon composites for stronger and lighter products, and next-generation fuels are all examples. As Ken points out, carbon-to-value strategies can extend into construction and infrastructure. Beyond creating new markets, carbon conversion could deliver lighter and more resilient materials, helping the U.S. build infrastructure that is stronger, longer-lasting, and better able to withstand climate stress.

A carbon-to-value economy can help the U.S. strengthen its manufacturing base and position itself as a global supplier of advanced materials.

These solutions are not yet economic at scale, but smart policies can change that. Expanding the 45Q tax credit to cover carbon use in materials, funding research at DOE labs and universities, and supporting early markets would help create the conditions for growth.

Conclusion

Instead of choosing between “doing nothing” and “net zero at any cost,” we need a third approach that invests in both climate resilience and carbon conversion.

Public adaptation strengthens and improves the infrastructure we rely on every day, including levees, power grids, water systems, and building standards that protect communities from climate shocks. Carbon-to-value strategies can complement these efforts by creating lighter, more resilient carbon-based infrastructure.

CES suggests this combination is a pragmatic way forward. As Peter emphasizes, adaptation works because it is in each nation’s self-interest. And as Ken reminds us, “The U.S. has a comparative advantage in carbon. Leveraging it to its fullest extent puts the U.S. in a position of strength now and well into the future.”

-----------

Scott Nyquist is a senior advisor at McKinsey & Company and vice chairman, Houston Energy Transition Initiative of the Greater Houston Partnership. The views expressed herein are Nyquist's own and not those of McKinsey & Company or of the Greater Houston Partnership. This article originally appeared on LinkedIn.

UH launches new series on AI’s impact on the energy sector

where to be

The University of Houston's Energy Transition Institute has launched a new Energy in Action Seminar Series that will feature talks focused on the intersection of the energy industry and digitization trends, such as AI.

The first event in the series took place earlier this month, featuring Raiford Smith, global market lead for power & energy for Google Cloud, who presented "AI, Energy, and Data Centers." The talk discussed the benefits of widespread AI adoption for growth in traditional and low-carbon energy resources.

Future events include:

“Through this timely and informative seminar series, ETI will bring together energy professionals, researchers, students, and anyone working in or around digital innovation in energy," Debalina Sengupta, chief operating officer of ETI, said in a news release. "We encourage industry members and students to register now and reap the benefits of participating in both the seminar and the reception, which presents a fantastic opportunity to stay ahead of industry developments and build a strong network in the Greater Houston energy ecosystem.”

The series is slated to continue throughout 2026. Each presentation is followed by a one-hour networking reception. Register for the next event here.