Can Houston stay a leader in the future of energy? Scott Nyquist weighs in. Photo via Getty Images

Houston has a legacy in in the energy industry — but can it remain the energy capital of the world? In short, yes.

That may sound counterintuitive, given that the energy system is transitioning — slowly, but inexorably — away from the city’s strengths in oil and gas. But that is the point: to an extent that may be overlooked, the O&G industry is critical to the transition, in two ways. Houston is well placed to take the lead on both.

First, there is the simple fact that oil and gas are essential, and will be for decades to come. About 99 percent of vehicles on the road right now use fossil fuels, and there are no readily available substitutes for their uses as feedstock for other industries, such as chemicals. Oil and gas account for almost 70 percent of US primary energy demand.

I do believe that their influence will diminish, as the energy system transitions to cleaner, lower-emission sources. McKinsey’s most recent Global Energy Perspective projected demand for oil will peak by 2027 and for gas a decade later. The International Energy Agency (IEA) sees the same evolution, but somewhat more slowly. Even after demand peaks, whenever that is, oil and gas will still be used, just not as much. I don’t see any reasonable scenario in which oil and gas disappears or is left in the ground for decades to come.

Second, and more interestingly, the O&G industry itself is essential to the goal of reducing greenhouse-gas emissions. If that sounds counterintuitive, too—well, it is. But bear with me. Under almost all emissions-reduction scenarios, carbon capture and storage (CCS), including direct air capture, and hydrogen play huge roles--accounting for more than 20 percent of future cuts in the IEA’s projection, for example. The Intergovernmental Panel on Climate Change also sees a big role for CCS, while noting that “global rates of CCS deployment are far below those in modelled pathways limiting global warming to 1.5°C or 2°C.” In other words, it matters, and there’s not enough of it. Hydrogen has been many people’s favorite technology of the future since at least the 1990s; the World Energy Council says it could account for as much as 25 percent of total final energy consumption by 2050, though likely less.

Let’s consider CCS first. This refers to reducing carbon-dioxide (CO2) emissions, particularly from industry, by capturing it on-site and then storing it underground: it is therefore never released into the atmosphere. Direct air capture sucks out carbon from the atmosphere, and then stores it. There is more than enough storage capacity, according to the IEA, and the technologies work.

No alt text provided for this image

Credit: Global CCS Institute

The problem has been regulation and economics—CCS is relatively expensive. About half of US emissions come from power generation and industry, such as cement; carbon capture works for both. And that is just what is possible now. Eventually, captured CO2 could be used to make a wide array of products, including building materials, carbon fiber, synthetic fuels, and plastics.

The Biden Administration is allocating $3.5 billion for direct air capture projects and $8 billion for hydrogen; those are not huge sums, given how costly large-scale energy projects are, but it just might be the beginning of bigger things. In addition, companies that have committed to net zero are beginning to put serious money behind carbon capture—almost $2 billion so far this year, compared to just $50 million in the past.

All this is relevant to Houston because Texas is the largest single US producer of both oil and gas, and these are the only players that now routinely use CCS, for gas processing and enhanced oil recovery. Houston is, by far, the national leader in carbon capture. Moreover, CCS can help to scale up “blue” or lower-emissions hydrogen, which could be an even bigger opportunity.

Hydrogen is not a source of energy, but a carrier of it. Once the hydrogen is produced—that is, separated from other elements, such as the oxygen in water—it can be stored and then released, either through combustion or via a fuel cell that converts hydrogen into electricity. Hydrogen could be used in a wide variety of ways, including powering vehicles, heating buildings, and fueling industry. Indeed, its potential is so broad and deep that the Hydrogen Council (with help from McKinsey) estimated late last year that hydrogen could contribute more than 20 percent of emissions abatement to 2050. The Council is a trade group and may therefore be a little optimistic (or a lot), but no one questions the potential of hydrogen in cutting emissions.

Right now, the primary use of hydrogen is in oil refining, which is one of Houston’s major industries. In addition, O&G companies are already looking into the conversion of methane in natural gas to hydrogen as well as the possibility of blending hydrogen into natural gas to lower the carbon content.

The Houston region already produces and consumes a third of the nation’s hydrogen, and is home to most of its dedicated hydrogen pipelines; its massive and efficient pipeline and transport system for gas can be adapted to move hydrogen. For the production of “green” or very-low emissions hydrogen, Houston also has a significant—and growing--renewable energy infrastructure. Indeed, if Texas was a country, it would be the world’s fifth-largest generator of wind power, and it is second in solar in the United States.

In short, when it comes to hydrogen, Houston is well ahead of the competitive pack, not only in physical terms, but in the human expertise that will count most of all to turn hydrogen from boutique to big. According to a recent report by the Center for Houston’s Future, Houston-based hydrogen assets could abate 220 million tons of carbon emissions by 2050, or more than half of Texas’s current emissions. Plus, it could create $100 billion in economic value.

The bottom line: there is no practical emissions reduction on the scale that the United States has committed to—net zero by 2050—without the development of CCS and hydrogen. And the O&G industry is leading the way in both these technologies. That puts Houston in an enviable position to both be part of the transition and to benefit from it. All told, according to the Houston Energy Transition Initiative, which includes 17 major energy-industry players, the region could gain up to 400,000 jobs in an accelerated scenario of adopting lower-carbon technologies. (McKinsey helped with this research, too.) To use a term beloved of consultants, that looks like a win-win.

Houston calls itself the “energy capital of the world”—and this isn’t a case of all hat and no cattle. The city is home to a critical mass of capital, innovation, expertise, and entrepreneurship. To continue to deserve that title, however, will require Houston to embrace the challenge of the energy transition: providing the reliable energy the world needs while also reducing emissions.

------

Scott Nyquist is a senior advisor at McKinsey & Company and vice chairman, Houston Energy Transition Initiative of the Greater Houston Partnership. The views expressed herein are Nyquist's own and not those of McKinsey & Company or of the Greater Houston Partnership. This article originally ran on LinkedIn.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Greentown Labs combines forces with MassChallenge to support more climate startups

strategic partnership

Climatetech incubator Greentown Labs has formed a strategic partnership with global zero-equity accelerator MassChallenge.

The two organizations have headquarters in the Boston area, while Greentown Labs is also co-located in Houston. MassChallenge has a hub in Dallas, as well as others in Israel, Switzerland and the United Kingdom.

The new partnership aims to strengthen the ecosystem for early-stage climatetech startups by providing more mentorship, support and a broader commercialization network for members, according to a news release.

Greentown Labs will share its expertise with the 23 startups in MassChallenge's first climate-specific accelerator, known as the MassChallenge Early Stage Climate program. Additionally, Greentown Labs members will benefit from MassChallenge's network of expert mentors, judges, entrepreneurs, partners, investors, philanthropists and others.

“There are so many synergies and shared values between MassChallenge and Greentown that launching a collaboration like this feels like a natural next step for our organizations as we strive to support as many early-stage climate founders as possible,” Georgina Campbell Flatter, Greentown Labs CEO, said in the news release. “We want to reduce the friction and barriers to market for these climate entrepreneurs and ultimately increase their opportunity for success—ecosystem collaboration is an essential part of solving these challenges together.”

Combined, Greentown and MassChallenge report that they have supported more than 4,500 founders and more than 1,000 climate startups. MassChallenge has awarded more than $18 million in equity-free grants to startups, which have gone on to raise over $15 billion, since it was founded in 2009. Greentown Labs has helped more than 575 startups raise more than $8.2 billion in funding since it launched in 2011.

Greentown recently added five startups to its Houston community and 14 other climatetech ventures to its Boston incubator. It also announced its third ACCEL cohort, which works to advance BIPOC-led startups in the climatetech space, earlier this year. Read more here.

Houston cleantech accelerator names 12 startups to 2025 cohort

early-stage accelerator

The Rice Alliance Clean Energy Accelerator has named 12 early-stage startups to its latest cohort.

The hybrid program, which operates in a hybrid capacity based out of the Ion, runs for 10 weeks and provides energy transition startups with training focused on fundraising, pilots, partnerships and sale. It begins July 8 and will be led by executive director Kerri Smith and program director Matthew Peña with support from executives-in-residence Lynn Frostman, John Jeffers, David Horsup and Dev Motiram.

The accelerator will culminate with a demo day on Sept. 18 at the Rice Alliance Energy Tech Venture Forum during the Houston Energy and Climate Startup Week.

Members of this year's cohort come from the Houston area as well as across the U.S. and Canada.

Class 5 for the Rice Alliance Clean Energy Accelerator includes:

  • Aqua-Cell Energy, which builds industrial-scale overnight batteries to provide affordable solar power
  • Arculus, a company that provides multilayer internal coating for pipelines that lowers friction, extends pipeline life and enables carbon dioxide transport and hydrogen blending
  • AtmoSpark, a Houston-based sustainable cooling and freshwater company that provides an electric field-driven air separation system that reduces dehumidification energy costs for data centers and industrial facilities
  • AtoMe, which delivers durable metallic composites to energy and aerospace companies using an eco-friendly dry blade method that eliminates harmful chemicals
  • ConceptLoop, a company that converts plastic waste into eco-friendly, low-carbon aggregate
  • Fathom Storage, which provides a more solidly embedded and steel-efficient anchoring solution for offshore service providers, wind energy developers and research institutes
  • GeoKiln, a Houston-based company that addresses issues of subsurface hydrogen extraction by applying proven oil and gas techniques to accelerate natural hydrogen reactions, enabling hydrogen production
  • Innowind Energy Solutions, a company that provides nonintrusive, active flow control devices to boost energy production and extend turbine lifespan
  • Lukera Energy, which transforms waste methane into high-value methanol using a breakthrough nanobubble technology
  • Metal Light Inc., which has developed a scalable, cost-effective Metal-Air generator to replace diesel generators
  • Moonshot Hydrogen, a company that converts food and agricultural waste into clean hydrogen and bioethanol
  • Resollant, a Woodlands-based company that delivers compact, zero-emission hydrogen and carbon reactors to refineries, petrochemical plants, steel and cement manufacturers and fuel producers

The Rice Alliance Clean Energy Accelerator has supported 55 ventures since it was founded in 2021, collectively raising over $250 million in funding, according to the university. See last year's cohort here.