Clockwise from top left: Sean Kelly of Amperon, Dianna Liu of ARIXTechnologies, Matthew Dawson of Elementium Materials, Vibhu Sharma of InnoVent Renewables, Cindy Taff of Sage Geosystems, and Emma Konet of TierraClimate. Photos courtesy

From finding funding to navigating the pace of traditional oil and gas company tech adoption, energy transition companies face their fair share of challenges.

This year's Houston Innovation Awards finalists in the Energy Transition category explained what their biggest challenge has been and how they've overcome it. See what they said below, and make sure to secure your tickets to the Nov. 14 event to see which of these finalists win the award.

"The evolving nature of the energy industry presents opportunities to solve some of our industry's greatest challenges. At Amperon we help optimize grid reliability and stability with the power of AI demand forecasting." 

Sean Kelly, CEO of Amperon, an AI platform powering the smart grid of the future

"The biggest challenge in leading an energy transition-focused startup has been balancing the urgency for sustainable solutions with the slow pace of change in traditional industries like oil and gas. Many companies are cautious about adopting new technologies, especially when it comes to integrating sustainability initiatives. We overcame this by positioning our solutions not just as environmentally friendly, but as tools that improve safety, efficiency, and cost savings. By aligning our value proposition with their operational goals and demonstrating real, measurable benefits, we were able to gain traction and drive adoption in industries that are traditionally resistant to change." 

— Dianna Liu, CEO of ARIXTechnologies, an integrated robotics and data analytics company that delivers inspection services through its robotics platforms

"Scaling up production of hard tech is a major challenge. Thankfully, we recruited top-notch talent with experience in technology scale-up and chemical processes. In addition, we've begun building partnerships with some of the world's largest chemical manufacturers in our space who are excited to be a part of our journey and could rapidly accelerate our go to market strategy. We have significant demand for our product as early as 2025, so partnering with these companies to scale-up will bring our technology to market years ahead of doing it alone."

— Matthew Dawson, CEO of Elementium Materials, a battery technology with liquid electrolyte solutions

"Our pyrolysis reactor is a proprietary design that was developed during Covid. We ran simulations to prove that it works, but it was not easy to test it in a pilot facility, let alone scaling it up. We managed ... to run our pilot plant studies, while working with them remotely. We proved that our reactor worked and produced high quality products. Later, we built our own pilot plant R&D facility to continue running tests and optimizing the process. Then, there was the challenge of scaling it up to commercial size. ... We put together a task force of four different companies to come together to design and build this complex reactor in record time."

— Vibhu Sharma, CEO of InnoVentRenewables, a startup with proprietary continuous pyrolysis technology that converts waste tires, plastics, and biomass into valuable fuels and chemicals

"Energy storage and geothermal power generation are capital-intensive infrastructure projects, requiring investors with a deep commitment and the patience in terms of years to allow the technology to be developed and proven in the field. One challenge is finding that niche of investors with the vision to join our journey. We have succeeded in raising our $30 million series A with these types of investors, whom we’re confident will continue the journey as we scale." 

— Cindy Taff, CEO of SageGeosystems, an energy company focused on developing and deploying advanced geothermal technologies to provide reliable power and sustainable energy storage solutions regardless of geography

"The biggest challenge we've faced has been to bring together massive independent power producers on one side who are investing hundreds of millions of dollars into grid infrastructure with multi- national tech giants on the other that don't have experience working much with energy storage. As a startup with only four employees, gaining credibility with these players was critical. We overcame this hurdle by becoming the preeminent thought leader on storage emissions, through publishing white papers, discussing the issues on podcasts, and (more)."

— Emma Konet, CTO of TierraClimate, a software provider that helps grid-scale batteries reduce carbon emissions

Fervo Energy's big deal — and more things to know this week. Photo via blog.google

Fervo's $244M funding round, events not to miss, and more Houston energy transition things to know this week

take note

Editor's note: Dive headfirst into the new week with three quick things to catch up on in Houston's energy transition: a roundup of events not to miss, a podcast to stream, and more.

Really big deal: Fervo Energy raises $244M funding round

An Oklahoma-based shale oil and gas leader has backed Fervo Energy's latest round of funding, supporting the startup's geothermal technology yet again.

Fervo announced its latest round of funding this week to the tune of $244 million. The round was led by Devon Energy, a company that's previously backed the startup.

“Demand for around-the-clock clean energy has never been higher, and next-generation geothermal is uniquely positioned to meet this demand,” Tim Latimer, Fervo CEO and co-founder, says in a news release. “Our technology is fully derisked, our pricing is already competitive, and our resource pipeline is vast. This investment enables Fervo to continue to position geothermal at the heart of 24/7 carbon-free energy production.”Read more.

Podcast to stream: Emma Konet, CTO and co-founder of Tierra Climate

If the energy transition is going to be successful, the energy storage space needs to be equipped to support both the increased volume of energy needed and new energies. And Emma Konet and her software company, Tierra Climate, are targeting one part of the equation: the market.

"To me, it's very clear that we need to build a lot of energy storage in order to transition the grid," Konet says on the Houston Innovators Podcast. "The problems that I saw were really on the market side of things."

Konet says she was bullish on the energy storage side of things when she was an early hire at Key Capture Energy, a private equity-backed energy storage project developer. The issue with energy storage projects, as Konet describes, is they aren't being monetized properly and, in some cases, aren't sustainable and increasing emissions. Read more.

Events not to miss

Put these Houston-area energy-related events on your calendar.

  • For the sixth year in a row, the Industrial XR Forum is returning to bring together industrial, energy & engineering immersive tech leaders, software developers and more at the 2024 Industrial IMMERSIVE Week on March 5 to 7 at Hyatt Regency West. Register.
  • CERAWeek 2024 is Monday, March 18, to Friday, March 22, in the George R. Brown Convention Center. Register.
  • DeCarb Connect supports senior leaders in decarbonization to accelerate strategy and decision making to reduce carbon emissions and reach net zero targets. The event is March 26 to 28 at Westin Houston Memorial City. Register.
  • On March 27, Greentown Houston is hosting "Accelerating Net-Zero Solutions: CCUS Innovation and Startup Showcase." Watch the Go Make 2023 cohort pitch their innovations in carbon utilization, storage, and traceability; hear about their work with Shell throughout the startup-corporate-partnerships accelerator; and learn from CCUS industry experts. Register.
  • On April 17, the University of Houston presents "Gulf Coast Hydrogen Ecosystem: Opportunities & Solutions" featuring experts from academia, industry, government, and more. The symposium begins at 8 am with a networking reception takes place beginning at 5 pm at the University of Houston Student Center South - Theater Room. Register.

Tierra Climate is technology agnostic, so while the company is seeing activity in the battery space, they can also work with other types of storage. Photo via Getty Images

Houston-based energy storage fintech platform founder targets new market key to transition

ready to grow

If the energy transition is going to be successful, the energy storage space needs to be equipped to support both the increased volume of energy needed and new energies. And Emma Konet and her software company, Tierra Climate, are targeting one part of the equation: the market.

"To me, it's very clear that we need to build a lot of energy storage in order to transition the grid," Konet says on the Houston Innovators Podcast. "The problems that I saw were really on the market side of things."

Konet says she was bullish on the energy storage side of things when she was an early hire at Key Capture Energy, a private equity-backed energy storage project developer. The issue with energy storage projects, as Konet describes, is they aren't being monetized properly and, in some cases, aren't sustainable and increasing emissions.

"The product we're building is solving these problems. It's a financial product, but what it's doing is solving a market deficiency," she says. "We're sending the right signal to the battery to operate in a way that reduces emissions, and then we're paying them for it because there's a demand to decarbonize."

For over a year, Konet, as co-founder and CTO, has worked on the platform, which is essentially a marketplace for corporates to buy carbon offsets, incentifying and monetizing storage projects.

Emma Konet, co-founder and CTO of Tierra Climate, joins the Houston Innovators Podcast. Photo via LinkedIn

Tierra Climate is technology agnostic, so while the company is seeing activity in the battery space, they can also work with other types of storage — like hydrogen, pumped water, and more. Konet says her ideal customers are companies with money and interest in playing a role in the energy transition and looking to offset their scope two and three emissions.

"The ultimate vision for our company is for this to be an accessible product that has a high degree of integrity that small to very large companies can execute on, because it's a pay-per-performance mechanism that doesn't lock companies into a really large contract," she says. "It's really scalable."

This year, she says the company, which won fourth place in the 2023 Rice Business Plan Competition, is focused on securing its first big contract and fundraising for its seed round.

———

This article originally ran on InnovationMap.

The six finalists for the sustainability category for the 2023 Houston Innovation Awards weigh in on their challenges overcome. Photos courtesy

4 biggest challenges of Houston-based sustainability startups

Houston innovation awards

Six Houston-area sustainability startups have been named finalists in the 2023 Houston Innovation Awards, but they didn't achieve this recognition — as well as see success for their businesses — without any obstacles.

The finalists were asked what their biggest challenges have been. From funding to market adoption, the sustainability companies have had to overcome major obstacles to continue to develop their businesses.

The awards program — hosted by EnergyCapital's sister site, InnovationMap, and Houston Exponential — will name its winners on November 8 at the Houston Innovation Awards. The program was established to honor the best and brightest companies and individuals from the city's innovation community. Eighteen energy startups were named as finalists across all categories, but the following responses come from the finalists in the sustainability category specifically.

    Click here to secure your tickets to see who wins.

    1. Securing a commercial pilot

    "As an early-stage clean energy developer, we struggled to convince key suppliers to work on our commercial pilot project. Suppliers were skeptical of our unproven technology and, given limited inventory from COVID, preferred to prioritize larger clients. We overcame this challenge by bringing on our top suppliers as strategic investors. With a long-term equity stake in Fervo, leading oilfield services companies were willing to provide Fervo with needed drilling rigs, frack crews, pumps, and other equipment." — Tim Latimer, founder and CEO of Fervo Energy

    2. Finding funding

    "Securing funding in Houston as a solo cleantech startup founder and an immigrant with no network. Overcome that by adopting a milestone-based fundraising approach and establishing credibility through accelerator/incubator programs." — Anas Al Kassas, CEO and founder of INOVUES

    "The biggest challenge has been finding funding. Most investors are looking towards software development companies as the capital costs are low in case of a risk. Geothermal costs are high, but it is physical technology that needs to be implemented to safety transition the energy grid to reliable, green power." — Cindy Taff, CEO of Sage Geosystems

    3. Market adoption

    "Market adoption by convincing partners and government about WHP as a solution, which is resource-intensive. Making strides by finding the correct contacts to educate." — Janice Tran, CEO and co-founder of Kanin Energy

    "We are creating a brand new financial instrument at the intersection of carbon markets and power markets, both of which are complicated and esoteric. Our biggest challenge has been the cold-start problem associated with launching a new product that has effectively no adoption. We tackled this problem by leading the Energy Storage Solutions Consortium (a group of corporates and battery developers looking for sustainability solutions in the power space), which has opened up access to customers on both sides of our marketplace. We have also leveraged our deep networks within corporate power procurement and energy storage development to talk to key decision-makers at innovative companies with aggressive climate goals to become early adopters of our products and services." — Emma Konet, CTO and co-founder of Tierra Climate

    4. Long scale timelines

    "Scaling and commercializing industrial technologies takes time. We realized this early on and designed the eXERO technology to be scalable from the onset. We developed the technology at the nexus of traditional electrolysis and conventional gas processing, taking the best of both worlds while avoiding their main pitfalls." — Claus Nussgruber, CEO of Utility Global

    Ad Placement 300x100
    Ad Placement 300x600

    CultureMap Emails are Awesome

    Houston companies scoop up $31 million in funds from DOE, EPA methane emissions program

    fresh funds

    The U.S. Department of Energy and the U.S. Environmental Protection Agency announced the selection of seven projects from Houston companies to receive funding through the Methane Emissions Reduction Program.

    The projects are among 43 others nationwide, including 12 from Texas, that reduce, monitor, measure, and quantify methane emissions from the oil and gas sector. The DOE and EPA awarded $850 million in total through the program.

    The Houston companies picked up $31.7 million in federal funding through the program in addition to more than $9.5 million in non-federal dollars.

    “I’m excited about the opportunities these will create internally but even more so the creation of jobs and training opportunities for the communities in which we work,” Scott McCurdy, Encino Environmental Services CEO, said in a news release. His company received awards for two projects.

    “These projects will allow us to further support and strengthen the U.S. Energy industry’s ability to deliver clean, reliable, and affordable energy globally,” he added.

    The Houston-area awards included:

    DaphneTech USA LLC

    Total funding: $5.8 million (approximately $4.5 million in federal, $1.3 million in non-federal)

    The award was granted for the company’s Daphne and Williams Methane Slip Abatement Plasma-Catalyst Scale-Up project. Daphne will study how its SlipPure technology, a novel exhaust gas cleaning system that abates methane and exhaust gas pollution from natural gas-fueled engines, can be economically viable across multiple engine types and operating conditions.

    Baker Hughes Energy Transition LLC 

    Total funding: $7.47 million (approximately $6 million in federal, $1.5 million in non-federal)

    The award was granted for the company’s Advancing Low Cost CH4 Emissions Reduction from Flares through Large Scale Deployment of Retrofittable and Adaptive Technology project. The project aims to develop a scalable, integrated methane emissions reduction system for flares based on optical gas imaging and estimation algorithms.

    Encino Environmental Services

    Total funding: $15.17 million (approximately $11 million in federal, $4.17 million in non-federal)

    The award was granted for two projects. The Advanced Methane Reduction System: Integrating Infrared and Visual Imaging to Assess Net Heating Value at the Combustion Zone and Determine Combustion Efficiency to Enhance Flaring Performance project aims to develop and deploy an advanced continuous emissions monitoring system. It’s Advancing Methane Emissions Reduction through Innovative Technology project will develop and deploy a technology using sensors and composite materials to address emissions originating in storage tanks.

    Envana Software Solutions

    Total funding: $5.26 million (approximately $4.2 million in federal, $1 million in non-federal)

    The award was granted for the company’s Leak Detection and Reduction Software to Identify Methane Emissions and Trigger Mitigation at Oil and Gas Production Facilities Based on SCADA Data project. It aims to improve its Recon software for monitoring methane emissions and develop partnerships with local universities and organizations.

    Capwell Services Inc.

    Total funding: $4.19 million (approximately $3.3 million in federal, $837,000 in non-federal)

    The award was granted for its Methane Emissions Abatement Technology for Low-Flow and Intermittent Emission Sources project. It aims to to deploy and field-test a methane abatement unit and improve air quality and health outcomes for communities near production facilities and establish field technician internships for local residents.

    Blue Sky Measurements 

    Total funding: $3.41 million (approximately $2.7 million in federal, $683,000 in non-federal)

    The award was granted for its Field Validation of Novel Fixed Position Optical Sensor for Fugitive Methane Emission Detection Quantification and Location with Real-Time Notification for Rapid Mitigation project. It aims to field test an optical sensing technology at six well sites in the Permian Basin.

    Southern Methodist University, The University of Texas at Austin, Texas A&M Engineering Experiment Station and Hyliion Inc. were other Texas-based organizations to earn awards. See the full list of projects here.

    Texas university's 'WaterHub' will dramatically reduce water usage by 40%

    Sustainable Move

    A major advancement in sustainability is coming to one Texas university. A new UT WaterHub at the University of Texas at Austin will be the largest facility of its kind in the U.S. and will transform how the university manages its water resources.

    It's designed to work with natural processes instead of against them for water savings of an estimated 40 percent. It's slated for completion in late 2027.

    The university has had an active water recovery program since the 1980s. Still, water is becoming an increasing concern in Austin. According to Texas Living Waters, a coalition of conservation groups, Texas loses enough water annually to fill Lady Bird Lake roughly 89 times over.

    As Austin continues to expand and face water shortages, the region's water supply faces increased pressure. The UT WaterHub plans to address this challenge by recycling water for campus energy operations, helping preserve water resources for both the university and local communities.

    The 9,600-square-foot water treatment facility will use an innovative filtration approach. To reduce reliance on expensive machinery and chemicals, the system uses plants to naturally filter water and gravity to pull it in the direction it needs to go. Used water will be gathered from a new collection point near the Darrell K Royal Texas Memorial Stadium and transported to the WaterHub, located in the heart of the engineering district. The facility's design includes a greenhouse viewable to the public, serving as an interactive learning space.

    Beyond water conservation, the facility is designed to protect the university against extreme weather events like winter storms. This new initiative will create a reliable backup water supply while decreasing university water usage, and will even reduce wastewater sent to the city by up to 70 percent.

    H2O Innovation, UT’s collaborator in this project, specializes in water solutions, helping organizations manage their water efficiently.

    "By combining cutting-edge technology with our innovative financing approach, we’re making it easier for organizations to adopt sustainable water practices that benefit both their bottom line and the environment, paving a step forward in water positivity,” said H2O Innovation president and CEO Frédéric Dugré in a press release.

    The university expects significant cost savings with this project, since it won't have to spend as much on buying water from the city or paying fees to dispose of used water. Over the next several years, this could add up to millions of dollars.

    ---

    A version of this story originally appeared on our sister site, CultureMap Austin.

    Report: Texas solar power, battery storage helped stabilize grid in summer 2024, but challenges remain

    by the numbers

    Research from the Federal Reserve Bank of Dallas shows that solar power and battery storage capacity helped stabilize Texas’ electric grid last summer.

    Between June 1 and Aug. 31, solar power met nearly 25 percent of midday electricity demand within the Electric Reliability Council of Texas (ERCOT) power grid. Rising solar and battery output in ERCOT assisted Texans during a summer of triple-digit heat and record load demands, but the report fears that the state’s power load will be “pushed to its limits” soon.

    The report examined how the grid performed during more demanding hours. At peak times, between 11 a.m. and 2 p.m. in the summer of 2024, solar output averaged nearly 17,000 megawatts compared with 12,000 megawatts during those hours in the previous year. Between 6 p.m. and 9 p.m., discharge from battery facilities averaged 714 megawatts in 2024 after averaging 238 megawatts for those hours in 2023. Solar and battery output have continued to grow since then, according to the report.

    “Batteries made a meaningful contribution to what those shoulder periods look like and how much scarcity we get into during these peak events,” ERCOT CEO Pablo Vegas said at a board of directors conference call.

    Increases in capacity from solar and battery-storage power in 2024 also eclipsed those of 2023. In 2023 ECOT added 4,570 megawatts of solar, compared to adding nearly 9,700 megawatts in 2024. Growth in battery storage capacity also increased from about 1,500 megawatts added in 2023 to more than 4,000 megawatts added in 2024. Natural gas capacity also saw increases while wind capacity dropped by about 50 percent.

    Texas’ installation of utility-scale solar surpassed California’s in the spring of last year, and jumped from 1,900 megawatts in 2019 to over 20,000 megawatts in 2024 with solar meeting about 50 percent of Texas' peak power demand during some days.

    While the numbers are encouraging, the report states that there could be future challenges, as more generating capacity will be required due to data center construction and broader electrification trends. The development of generating more capacity will rely on multiple factors like price signals and market conditions that invite more baseload and dispatchable generating capacity, which includes longer-duration batteries, and investment in power purchase agreements and other power arrangements by large-scale consumers, according to the report.

    Additionally, peak demand during winter freezes presents challenges not seen in the summer. For example, in colder months, peak electricity demand often occurs in the early morning before solar energy is available, and it predicts that current battery storage may be insufficient to meet the demand. The analysis indicated a 50% chance of rolling outages during a cold snap similar to December 2022 and an 80% chance if conditions mirror the February 2021 deep freeze at the grid’s current state.

    The report also claimed that ERCOT’s energy-only market design and new incentive structures, such as the Texas Energy Fund, do not appear to be enough to meet the predicted future magnitude and speed of load growth.

    Read the full report here.