The grants will fund a total of 25 projects in 14 states, including Texas. Photo via Getty Images

The Biden administration is awarding over $3 billion to U.S. companies to boost domestic production of advanced batteries and other materials used for electric vehicles, part of a continuing push to reduce China’s global dominance in battery production for EVs and other electronics.

The grants will fund a total of 25 projects in 14 states, including Texas, as well as Ohio, South Carolina, Michigan, North Carolina, and Louisiana.

The grants announced Friday mark the second round of EV battery funding under the bipartisan infrastructure law approved in 2021. An earlier round allocated $1.8 billion for 14 projects that are ongoing. The totals are down from amounts officials announced in October 2022 and reflect a number of projects that were withdrawn or rejected by U.S. officials during sometimes lengthy negotiations.

The money is part of a larger effort by President Joe Biden and Vice President Kamala Harris to boost production and sales of electric vehicles as a key element of their strategy to slow climate change and build up U.S. manufacturing. Companies receiving awards process lithium, graphite or other battery materials, or manufacture components used in EV batteries.

“Today’s awards move us closer to achieving the administration’s goal of building an end-to-end supply chain for batteries and critical minerals here in America, from mining to processing to manufacturing and recycling, which is vital to reduce China’s dominance of this critical sector,'' White House economic adviser Lael Brainard said.

The Biden-Harris administration is "committed to making batteries in the United States that are going to be vital for powering our grid, our homes and businesses and America’s iconic auto industry,'' Brainard told reporters Thursday during a White House call.

The awards announced Friday bring to nearly $35 billion total U.S. investments to bolster domestic critical minerals and battery supply chains, Brainard said, citing projects from major lithium mines in Nevada and North Carolina to battery factories in Michigan and Ohio to production of rare earth elements and magnets in California and Texas.

“We’re using every tool at our disposal, from grants and loans to allocated tax credits,'' she said, adding that the administration's approach has leveraged more $100 billion in private sector investment since Biden took office.

In recent years, China has cornered the market for processing and refining key minerals such as lithium, rare earth elements and gallium, and also has dominated battery production, leaving the U.S. and its allies and partners "vulnerable,'' Brainard said.

The U.S. has responded by taking what she called “tough, targeted measures to enforce against unfair actions by China.” Just last week, officials finalized higher tariffs on Chinese imports of critical minerals such as graphite used in EV and grid-storage batteries. The administration also has acted under the 2022 climate law to incentivize domestic sourcing for EVs sold in the U.S. and placed restrictions on products from China and other adversaries labeled by the U.S. as foreign entities of concern.

"We're committed to making batteries in the United States of America,'' Energy Secretary Jennifer Granholm said.

If finalized, awards announced Friday will support 25 projects with 8,000 construction jobs and over 4,000 permanent jobs, officials said. Companies will be required to match grants on a 50-50 basis, with a minimum $50 million investment, the Energy Department said.

While federal funding may not be make-or-break for some projects, the infusion of cash from the infrastructure and climate laws has dramatically transformed the U.S. battery manufacturing sector in the past few years, said Matthew McDowell, associate professor of engineering at Georgia Institute of Technology.

McDowell said he is excited about the next generation of batteries for clean energy storage, including solid state batteries, which could potentially hold more energy than lithium ion.

A proposed Environmental Protection Agency rule intended to encourage industry to adopt best practices that reduce emissions of methane and thereby avoid paying. Photo via Canva

EPA sets out rules for proposed 'methane fee' for waste generated by oil and natural gas companies

pollution deterrent

Oil and natural gas companies for the first time would have to pay a fee for methane emissions that exceed certain levels under a rule proposed Friday by the Biden administration.

The proposed Environmental Protection Agency rule follows through on a directive from Congress included in the 2022 climate law. The new fee is intended to encourage industry to adopt best practices that reduce emissions of methane and thereby avoid paying.

Methane is a climate “super pollutant” that is more potent in the short term than carbon dioxide and is responsible for about one-third of greenhouse gas emissions. The oil and natural gas sector is the largest industrial source of methane emissions in the United States, and advocates say reduction of methane emissions is an important way to slow climate change.

Excess methane produced this year would result in a fee of $900 per ton, with fees rising to $1,500 per ton by 2026.

EPA Administrator Michael Regan said the proposed fee would work in tandem with a final rule on methane emissions EPA announced last month. The fee, formally known as the Methane Emissions Reduction Program, will encourage early deployment of available technologies to reduce methane emissions and other harmful air pollutants before the new standards take effect, he said.

The rule announced in December includes a two-year phase-in period for companies to eliminate routine flaring of natural gas from new oil wells.

“EPA is delivering on a comprehensive strategy to reduce wasteful methane emissions that endanger communities and fuel the climate crisis,” Regan said in a statement. When finalized later this year, the proposed methane fee will set technology standards that will “incentivize industry innovation'' and spur action to reduce pollution, he said.

Leading oil and gas companies already meet or exceed performance levels set by Congress under the climate law, meaning they will not have to pay the proposed fee, Regan and other officials said.

Sen. Tom Carper, chairman of the Senate Environment and Public Works Committee, said he was pleased the administration was moving forward with the methane fee as directed by Congress.

“We know methane is over 80 times more potent than carbon dioxide at trapping heat in our atmosphere in the short term,'' said Carper, D-Del. He said the program "will incentivize producers to cut wasteful and excessive methane emissions during oil and gas production.”

New Jersey Rep. Frank Pallone, the top Democrat on the House Energy and Commerce Committee, said oil and gas companies have long calculated that it's cheaper to waste methane through flaring and other techniques than to make necessary upgrades to prevent leaks.

“Wasted methane never makes its way to consumers, but they are nevertheless stuck with the bill,” Pallone said. The proposed methane fee “will ensure consumers no longer pay for wasted energy or the harm its emissions can cause.''

Republicans call the methane fee a tax that could raise the price of natural gas. “This proposal means increased costs for employers and higher energy bills for millions of Americans,” said Sen. Shelley Moore Capito, R-West Virginia.

The American Petroleum Institute, the oil and gas industry's largest lobbying group, slammed the proposal Friday and called for Congress to repeal it.

“As the world looks to U.S. energy producers to provide stability in an increasingly unstable world, this punitive tax increase is a serious misstep that undermines America’s energy advantage,'' said Dustin Meyer, API's senior vice president of policy, economics and regulatory affairs.

While the group supports “smart” federal methane regulation, the EPA proposal “creates an incoherent, confusing regulatory regime that will only stifle innovation and undermine our ability to meet rising energy demand,'' Meyer said. “We look forward to working with Congress to repeal the IRA’s misguided new tax on American energy.”

Fred Krupp, president of the Environmental Defense Fund, called the proposed fee "common sense,'' adding that oil and gas companies should be held accountable for methane pollution, a primary source of global warming.

In a related development, EPA said it is working with industry and others to improve how methane emissions are reported, citing numerous studies showing that and oil and gas companies have significantly underreported their methane emissions to the EPA under the agency's Greenhouse Gas Reporting Program.

The climate law, formally known as the Inflation Reduction Act, established a waste-emissions charge for methane from oil and gas facilities that report emissions of more than 25,000 metric tons of carbon dioxide equivalent per year to the EPA. The proposal announced Friday sets out details of how the fee will be implemented, including how exemptions will be applied.

The agency said it expects that over time, fewer oil and gas sites will be charged as they reduce their emissions in compliance with the rule.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

SLB partners with renewables company to develop next-gen geothermal systems

geothermal partnership

Houston-based energy technology company SLB and renewable energy company Ormat Technologies have teamed up to fast-track the development and commercialization of advanced geothermal technology.

Their initiative focuses on enhanced geothermal systems (EGS). These systems represent “the next generation of geothermal technology, meant to unlock geothermal energy in regions beyond where conventional geothermal resources exist,” the companies said in a news release.

After co-developing EGS technology, the companies will test it at an existing Ormat facility. Following the pilot project, SLB and Nevada-based Ormat will pursue large-scale EGS commercialization for utilities, data center operators and other customers. Ormat owns, operates, designs, makes and sells geothermal and recovered energy generation (REG) power plants.

“There is an urgent need to meet the growing demand for energy driven by AI and other factors. This requires accelerating the path to clean and reliable energy,” Gavin Rennick, president of new energy at SLB, said in a news release.

Traditional geothermal systems rely on natural hot water or steam reservoirs underground, limiting the use of geothermal technology. EGS projects are designed to create thermal reservoirs in naturally hot rock through which water can circulate, transferring the energy back to the surface for power generation and enabling broader availability of geothermal energy.

The U.S. Department of Energy estimates next-generation geothermal, such as EGS, could provide 90 gigawatts of electricity by 2050.

Baker Hughes to provide equipment for massive low-carbon ammonia plant

coming soon

Houston-based energy technology company Baker Hughes has been tapped to supply equipment for what will be the world’s largest low-carbon ammonia plant.

French technology and engineering company Technip Energies will buy a steam turbine generator and compression equipment from Baker Hughes for Blue Point Number One, a $4 billion low-carbon ammonia plant being developed in Louisiana by a joint venture comprising CF Industries, JERA and Mitsui & Co. Technip was awarded a contract worth at least $1.1 billion to provide services for the Blue Point project.

CF, a producer of ammonia and nitrogen, owns a 40 percent stake in the joint venture, with JERA, Japan’s largest power generator, at 35 percent and Mitsui, a Japanese industrial conglomerate, at 25 percent.

The Blue Point Number One project, to be located at CF’s Blue Point ammonia production facility, will be capable of producing about 1.4 million metric tons of low-carbon ammonia per year and permanently storing up to 2.3 million metric tons of carbon dioxide.

Construction of the ammonia-making facility is expected to start in 2026, with production of low-carbon ammonia set to get underway in 2029.

“Ammonia, as a lower-carbon energy source, is poised to play a pivotal role in enabling and accelerating global sustainable energy development,” Alessandro Bresciani, senior vice president of energy equipment at Baker Hughes, said in a news release.

Earlier this year, British engineering and industrial gas company Linde signed a long-term contract to supply industrial gases for Blue Point Number One. Linde Engineering Americas is based in Houston.

Houston expert asks: Is the Texas grid ready for the future?

Guets Column

Texas has spent the past five years racing to strengthen its electric grid after Winter Storm Uri exposed just how vulnerable it was. Billions have gone into new transmission lines, grid hardening, and a surge of renewables and batteries. Those moves have made a difference, we haven’t seen another systemwide blackout like Uri, but the question now isn’t what’s been done, it’s whether Texas can keep up with what’s coming.

Massive data centers, electric vehicles, and industrial projects are driving electricity demand to unprecedented levels. NERC recently boosted its 10-year load forecast for Texas by more than 60%. McKinsey projects that U.S. electricity demand will rise roughly 40% by 2030 and double by 2050, with data centers alone accounting for as much as 11-12% of total U.S. electricity demand by 2030, up from about 4% today. Texas, already the top destination for new data centers, will feel that surge at a greater scale.

While the challenges ahead are massive and there will undoubtedly be bumps in the road (some probably big), we have an engaged Texas legislature, capable regulatory bodies, active non-profits, pragmatic industry groups, and the best energy minds in the world working together to make a market-based system work. I am optimistic Texas will find a way.

Why Texas Faces a Unique Grid Challenge

About 90% of Texas is served by a single, independent grid operated by ERCOT, rather than being connected to the two large interstate grids that cover the rest of the country. This structure allows ERCOT to avoid federal oversight of its market design, although it still must comply with FERC reliability standards. The trade-off is limited access to power from neighboring states during emergencies, leaving Texas to rely almost entirely on in-state generation and reserves when extreme weather hits.

ERCOT’s market design is also different. It’s an “energy-only” market, meaning generators are paid for electricity sold, not for keeping capacity available. While that lowers prices in normal times, it also makes it harder to finance backup, dispatchable generation like natural gas and batteries needed when the wind isn’t blowing or the sun isn’t shining.

The Risks Mounting

In Texas, solar and wind power supply a significant percentage of electricity to the grid. As Julie Cohn, a nonresident scholar at the Baker Institute, explains, these inverter‑based resources “connect through power electronics, which means they don’t provide the same physical signals to the grid that traditional generators do.” The Odessa incidents, where solar farms tripped offline during minor grid disturbances, showed how fragile parts of this evolving grid can be. “Fortunately, it didn’t result in customer outages, and it was a clear signal that Texas has the opportunity to lead in solving this challenge.”

Extreme weather adds more pressure while the grid is trying to adapt to a surge in use. CES research manager Miaomiao Rimmer notes: “Hurricane frequencies haven't increased, but infrastructure and population in their paths have expanded dramatically. The same hurricane that hit 70 years ago would cause far more damage today because there’s simply more in harm’s way.”

Medlock: “Texas has made significant strides in the last 5 years, but there’s more work to be done.”

Ken Medlock, Senior Director of the Center for Energy Studies at Rice University’s Baker Institute, argues that Texas’s problem isn’t a lack of solutions; it’s how quickly those solutions are implemented. He stresses that during the January 2024 cold snap, natural gas kept the grid stable, proving that “any system configuration with sufficient, dispatchable generation capacity would have kept the lights on.” Yet ERCOT load has exceeded dispatchable capacity with growing frequency since 2018, raising the stakes for future reliability.

Ken notes: “ERCOT has a substantial portfolio of options, including investment in dispatchable generation, storage near industrial users, transmission expansion, and siting generation closer to load centers. But allowing structural risks to reliability that can be avoided at a reasonable cost is unacceptable. Appropriate market design and sufficient regulatory oversight are critical.” He emphasizes that reliability must be explicitly priced into ERCOT’s market so backup resources can be built and maintained profitably. These resources, whether natural gas, nuclear, or batteries, cannot remain afterthoughts if Texas wants a stable grid.

Building a More Reliable Grid

For Texas to keep pace with rising demand and withstand severe weather, it must act decisively on multiple fronts, strengthening its grid while building for long-term growth.

  • Coordinated Planning: Align regulators, utilities, and market players to plan decades ahead, not just for next summer.
  • Balancing Clean and Reliable Power: Match renewable growth with flexible, dispatchable generation that can deliver power on demand.
  • Fixing Local Weak Spots: Harden distribution networks, where most outages occur, rather than focusing only on large-scale generation.
  • Market Reform and Technology Investment: Price reliability fairly and support R&D to make renewables strengthen, not destabilize, the grid.

In Conclusion

While Texas has undeniably improved its grid since Winter Storm Uri, surging electricity demand and intensifying weather mean the work is far from over. Unlike other states, ERCOT can’t rely on its neighbors for backup power, and its market structure makes new dispatchable resources harder to build. Decisive leadership, investment, and reforms will be needed to ensure Texas can keep the lights on.

It probably won’t be a smooth journey, but my sense is that Texas will solve these problems and do something spectacular. It will deliver more power with fewer emissions, faster than skeptics believe, and surprise us all.

-----------

Scott Nyquist is a senior advisor at McKinsey & Company and vice chairman, Houston Energy Transition Initiative of the Greater Houston Partnership. The views expressed herein are Nyquist's own and not those of McKinsey & Company or of the Greater Houston Partnership. This article originally appeared on LinkedIn.