Jesus Soto Jr., an energy executive with deep Houston ties, will join CenterPoint Energy as COO and executive vice president on Aug. 11. Photo courtesy CenterPoint Energy.

CenterPoint Energy has named Jesus Soto Jr. as its new executive vice president and chief operating officer.

An energy industry veteran with deep ties to Texas, Soto will oversee the company's electric operations, gas operations, safety, supply chain, and customer care functions. The company says Soto will also focus on improving reliability and meeting the increased energy needs in the states CenterPoint serves.

"We are pleased to be able to welcome a leader of Jesus Soto's caliber to CenterPoint's executive team,” Jason Wells, CEO and president of CenterPoint, said in a news release. “We have one of the most dynamic growth stories in the industry, and over the next five years we will deliver over $31 billion of investments across our footprint as part of our capital plan. Jesus's deep understanding and background are the perfect match to help us deliver this incredible scope of work at-pace that will foster the economic development and growth demands in our key markets. He will also be instrumental in helping us continue to focus on improving safety and delivering better reliability for all the communities we are fortunate to serve.”

Soto comes to CenterPoint with over 30 years of experience in leading large teams and executing large scale capital projects. As a longtime Houstonian, he served in roles as executive vice president of Quanta Services and COO for Mears Group Inc. He also served in senior leadership roles at other utility and energy companies, including PG&E Corporation in Northern California and El Paso Corp. in Houston.

Soto has a bachelor's degree in civil engineering from the University of Texas at El Paso, and a master's degree in civil engineering from Texas A&M University. He has a second master's degree in business administration from the University of Phoenix.

“I'm excited to join CenterPoint's high-performing team,” Soto said in the news release. “It's a true privilege to be able to serve our 7 million customers in Texas, Indiana, Ohio and Minnesota. We have an incredible amount of capital work ahead of us to help meet the growing energy needs of our customers and communities, especially across Texas.”

Soto will join the company on Aug. 11 and report to Wells as CenterPoint continues on its Greater Houston Resiliency Initiative and Systemwide Resiliency Plan.

“To help realize our resiliency and growth goals, I look forward to helping our teams deliver this work safely while helping our customers experience better outcomes,” Soto added in the news release. “They expect, and deserve, no less.”

Debalina Sengupta has been named as the chief operating officer of UH's Energy Transition Institute. Photo via UH.edu

University of Houston names new energy transition-focused executive

leading the way

The University of Houston has named a new C-level executive to its energy transition-focused initiative.

Debalina Sengupta has been named as the chief operating officer of UH's Energy Transition Institute, which was established in 2022 by a $10 million commitment from Shell USA Inc. and Shell Global Solutions (US) Inc. The institute focuses on hydrogen, carbon management and circular plastics and works closely with UH’s Hewlett Packard Enterprise Data Science Institute and researchers across the university.

Sengupta, who was previously a chemical engineer with over 18 years of experience with sustainability and resilience issues, was called to ETI’s mission and its focus on Houston, which is home to more than 4,500 energy companies and a pivotal international oil and gas hub.

“UH Energy Transition Institute is the first of its kind Institute setup in Texas that focuses solely on the transition of energy,” she says in a news release. “A two-way communication between the academic community and various stakeholders is necessary to implement the transition and I saw the UH ETI role enabling me to achieve this critical goal.”

Originally from India, where she saw first-hand the impact of natural disasters, she has been working with Texas coastal communities over the past two years to not help bring coastal resilience projects along the coast. The Texas coast will serve potentially as an economic development zone for several energy transition projects.

“It is necessary that we think deeply about sustainability quantification for our energy systems, diversify and expand from fossil to non-fossil resources, and understand how it can impact our future generations,” Sengupta continues. “This requires rigorous training and adopting new technologies that will enable the change, and I am dedicated to work towards this goal for UH ETI.”

Sengupta has also worked as a postdoctoral research fellow in the U.S. Environmental Protection Agency. She has a bachelor’s degree in chemical engineering from Jadavpur University in India and a doctorate from Louisiana State University with a focus on process systems engineering. Sengupta previously was at Texas A&M University where she was the Coastal Resilience Program director for Texas Sea Grant,which is a federal-state partnership program funded by the U.S. Department of Commerce National Oceanic and Atmospheric Administration. She has served as the associate director of the Texas A&M Engineering Experiment Station’s Gas and Fuels Research Center; coordinator of the Water, Energy and Food Nexus at Texas A&M Energy Institute; and lecturer at the Artie McFerrin Department of Chemical Engineering.

The ETI has helped catalyze “cross-disciplinary cooperation” to expand funding opportunities for UH faculty, which includes direct funding of over 24 projects via seed grants. As the new COO, Sengupta will work alongside founding executive director of the institute, Joe Powell, their executive team and the ETI advisory board to develop and implement strategic plans. Her position is partially funded by a $500,000 grant from the Houston-based Cullen Foundation.

“We are excited to have Dr. Sengupta join us at UH to help drive the Energy Transition Institute to fulfill its mission in educating students, expanding top-tier research, and providing thought leadership in sustainable energy and chemicals for the Houston area and beyond,” Powell adds. “Dr. Sengupta brings a strong background and network in collaborating with academic, community, governmental and industry partners to build the coalitions needed for success.”

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston energy expert: How the U.S. can turn carbon into growth

Guets Column

For the past 40 years, climate policy has often felt like two steps forward, one step back. Regulations shift with politics, incentives get diluted, and long-term aspirations like net-zero by 2050 seem increasingly out of reach. Yet greenhouse gases continue to rise, and the challenges they pose are not going away.

This matters because the costs are real. Extreme weather is already straining U.S. power grids, damaging homes, and disrupting supply chains. Communities are spending more on recovery while businesses face rising risks to operations and assets. So, how can the U.S. prepare and respond?

The Baker Institute Center for Energy Studies (CES) points to two complementary strategies. First, invest in large-scale public adaptation to protect communities and infrastructure. Second, reframe carbon as a resource, not just a waste stream to be reduced.

Why Focusing on Emissions Alone Falls Short

Peter Hartley argues that decades of global efforts to curb emissions have done little to slow the rise of CO₂. International cooperation is difficult, the costs are felt immediately, and the technologies needed are often expensive. Emissions reduction has been the central policy tool for decades, and it has been neither sufficient nor effective.

One practical response is adaptation, which means preparing for climate impacts we can’t avoid. Some of these measures are private, taken by households or businesses to reduce their own risks, such as farmers shifting crop types, property owners installing fire-resistant materials, or families improving insulation. Others are public goods that require policy action. These include building stronger levees and flood defenses, reinforcing power grids, upgrading water systems, revising building codes, and planning for wildfire risks. Such efforts protect people today while reducing long-term costs, and they work regardless of the source of extreme weather. Adaptation also does not depend on global consensus; each country, state, or city can act in its own interest. Many of these measures even deliver benefits beyond weather resilience, such as stronger infrastructure and improved security against broader threats.

McKinsey research reinforces this logic. Without a rapid scale-up of climate adaptation, the U.S. will face serious socioeconomic risks. These include damage to infrastructure and property from storms, floods, and heat waves, as well as greater stress on vulnerable populations and disrupted supply chains.

Making Carbon Work for Us

While adaptation addresses immediate risks, Ken Medlock points to a longer-term opportunity: turning carbon into value.

Carbon can serve as a building block for advanced materials in construction, transportation, power transmission, and agriculture. Biochar to improve soils, carbon composites for stronger and lighter products, and next-generation fuels are all examples. As Ken points out, carbon-to-value strategies can extend into construction and infrastructure. Beyond creating new markets, carbon conversion could deliver lighter and more resilient materials, helping the U.S. build infrastructure that is stronger, longer-lasting, and better able to withstand climate stress.

A carbon-to-value economy can help the U.S. strengthen its manufacturing base and position itself as a global supplier of advanced materials.

These solutions are not yet economic at scale, but smart policies can change that. Expanding the 45Q tax credit to cover carbon use in materials, funding research at DOE labs and universities, and supporting early markets would help create the conditions for growth.

Conclusion

Instead of choosing between “doing nothing” and “net zero at any cost,” we need a third approach that invests in both climate resilience and carbon conversion.

Public adaptation strengthens and improves the infrastructure we rely on every day, including levees, power grids, water systems, and building standards that protect communities from climate shocks. Carbon-to-value strategies can complement these efforts by creating lighter, more resilient carbon-based infrastructure.

CES suggests this combination is a pragmatic way forward. As Peter emphasizes, adaptation works because it is in each nation’s self-interest. And as Ken reminds us, “The U.S. has a comparative advantage in carbon. Leveraging it to its fullest extent puts the U.S. in a position of strength now and well into the future.”

-----------

Scott Nyquist is a senior advisor at McKinsey & Company and vice chairman, Houston Energy Transition Initiative of the Greater Houston Partnership. The views expressed herein are Nyquist's own and not those of McKinsey & Company or of the Greater Houston Partnership. This article originally appeared on LinkedIn.

UH launches new series on AI’s impact on the energy sector

where to be

The University of Houston's Energy Transition Institute has launched a new Energy in Action Seminar Series that will feature talks focused on the intersection of the energy industry and digitization trends, such as AI.

The first event in the series took place earlier this month, featuring Raiford Smith, global market lead for power & energy for Google Cloud, who presented "AI, Energy, and Data Centers." The talk discussed the benefits of widespread AI adoption for growth in traditional and low-carbon energy resources.

Future events include:

“Through this timely and informative seminar series, ETI will bring together energy professionals, researchers, students, and anyone working in or around digital innovation in energy," Debalina Sengupta, chief operating officer of ETI, said in a news release. "We encourage industry members and students to register now and reap the benefits of participating in both the seminar and the reception, which presents a fantastic opportunity to stay ahead of industry developments and build a strong network in the Greater Houston energy ecosystem.”

The series is slated to continue throughout 2026. Each presentation is followed by a one-hour networking reception. Register for the next event here.

ExxonMobil pauses plans for $7B hydrogen plant in Baytown

project on pause

As anticipated, Spring-based oil and gas giant ExxonMobil has paused plans to build a low-hydrogen plant in Baytown, Chairman and CEO Darren Woods told Reuters.

“The suspension of the project, which had already experienced delays, reflects a wider slowdown in efforts by traditional oil and gas firms to transition to cleaner energy sources as many of the initiatives struggle to turn a profit,” Reuters reported.

Woods signaled during ExxonMobil’s second-quarter earnings call that the company was weighing whether it would move forward with the proposed $7 billion plant.

The Biden-era Inflation Reduction Act established a 10-year incentive, the 45V tax credit, for production of clean hydrogen. But under President Trump’s One Big Beautiful Bill Act, the period for beginning construction of low-carbon hydrogen projects that qualify for the tax credit has been compressed. The Inflation Reduction Act called for construction to begin by 2033. The Big Beautiful Bill changed the construction start time to early 2028.

“While our project can meet this timeline, we’re concerned about the development of a broader market, which is critical to transition from government incentives,” Woods said during the earnings call.

Woods had said ExxonMobil was figuring out whether a combination of the 45Q tax credit for carbon capture projects and the revised 45V tax credit would enable a broader market for low-carbon hydrogen.

“If we can’t see an eventual path to a market-driven business, we won’t move forward with the [Baytown] project,” Woods told Wall Street analysts.

“We knew that helping to establish a brand-new product and a brand-new market initially driven by government policy would not be easy or advance in a straight line,” he added.

ExxonMobil announced in 2022 that it would build the low-carbon hydrogen plant at its refining and petrochemical complex in Baytown. The company had indicated the plant would start initial production in 2027.

ExxonMobil had said the Baytown plant would produce up to 1 billion cubic feet of hydrogen per day made from natural gas, and capture and store more than 98 percent of the associated carbon dioxide. The plant would have been capable of storing as much as 10 million metric tons of CO2 per year.