Ten Rice University energy innovators have been selected for the Chevron Energy Graduate Fellowship. Photo by Gustavo Raskosky/Rice University.

Chevron and Rice University have named 10 graduate students to the second cohort of the Chevron Energy Graduate Fellowship.

The students come from various departments at Rice and are working on innovations that reduce emissions or improve upon low-carbon technology. Fellows will each receive a $10,000 award to support their research along with the opportunity to connect with "industry experts who can provide valuable insight on scaling technologies from the lab to commercial application," according to Rice.

The fellows will present projects during a cross-university virtual symposium in the spring.

The 2025-26 Chevron Energy Graduate Fellows and their research topics include:

  • Cristel Carolina Brindis Flores, Molecular Simulations of CO₂ and H₂ for Geostorage
  • Davide Cavuto, Intensification of Floating Catalyst Chemical Vapor Deposition for Carbon Nanotubes Synthesis
  • Jaewoo Kim, Distributed Acoustic Sensing for In-situ Stress Monitoring in Enhanced Geothermal Systems
  • Jessica Hema Persaud, Understanding Tin Perovskite Crystallization Dynamics for All-Perovskite Tandems
  • Johanna Ikabu Bangala, Upcycling Methane-derived Zero-Valent Carbon for Sustainable Agriculture
  • Kashif Liaqat, From Waste to Resource: Increased Sustainability Through Hybrid Waste Heat Recovery Systems for Data Centers and Industry
  • Md Abid Shahriar Rahman Saadi, Advancing Sustainable Structural, Energy and Food Systems through Engineering of Biopolymers
  • Ratnika Gupta, Micro-Silicon/Carbon Nanotube Composite Anodes with Metal-free Current Collector for High Performance Li-Ion Batteries
  • Wei Ping Lam, Electrifying Chemical Manufacturing: High-Pressure Electrochemical CO₂ Capture and Conversion
  • William Schmid, Light-Driven Thermal Desalination Using Transient Solar Illumination

“Through this fellowship program, we can support outstanding graduate students from across the university who are conducting cutting-edge research across a variety of fields,” Carrie Masiello, director of the Rice Sustainability Institute, said in a news release. “This year, our 2026 Chevron Fellows are working on research that reflects the diversity of the sustainability research at Rice … and these scholarly endeavors exemplify the breadth and depth of research enabled by Chevron’s generous support.”

The Chevron Fellows program launched at Rice last year, naming 10 graduate students to the inaugural cohort. It is funded by Chevron and was created through a partnership between the Rice Sustainability Institute. Chevron launched a similar program at the University of Houston in 2023.

“Rice University continues to be an exceptional partner in advancing energy innovation,” Chris Powers, director of exploration commercial and portfolio at Chevron, added in the release. “The Chevron Energy Fellows program showcases the brilliance and drive of Rice graduate students, whose research in areas like carbon conversion, solar materials and geothermal sensing is already shaping the future of sustainable energy. We’re proud to celebrate their achievements and look forward to the impact they’ll continue to make across the energy landscape.”

Ten Rice University energy innovators have been selected for the Chevron Energy Graduate Fellowship. Photo by of Jeff Fitlow/Rice University

Chevron names inaugural cohort of energy transition graduate students at Rice University

ready to innovate

A new program from Rice University and Chevron has named its inaugural cohort.

Funded by Chevron, the Chevron Energy Graduate Fellowship will provide $10,000 each to 10 Rice graduate students for the current academic year, which supports research in energy-related fields.

The Rice Sustainability Institute (RSI) hosted the event to introduce the inaugural cohort of the Rice Chevron Energy Graduate Fellowship at the Ralph S. O’Connor Building for Engineering and Science. Director of the RSI and the W. Maurice Ewing Professor in Earth, Environmental and Planetary Sciences, Carrie Masiello presented each fellow with a certificate during the ceremony.

“This fellowship supports students working on a wide range of topics related to scalable innovations in energy production that will lead to the reduction of carbon dioxide emissions,” Masiello says in a news release. “It’s important that we recognize the importance of intellectual diversity to the kind of problem-solving we have to do as we accomplish the energy transition.”

The work of the students focuses on creating "real-world, scalable solutions to transform the energy landscape,” per the Rice release. Recipients of the fellowship will research solutions to energy challenges that include producing eco-friendly hydrogen alternatives to fossil fuels and recycling lithium-ion batteries.

Some of the fellows' work will focus on renewable fuels and carbon-capture technologies, biological systems to sequester carbon dioxide, and the potential of soil organic carbon sequestration on agricultural land if we remove the additionality constraint. Xi Chen, a doctoral student in materials science and nanoengineering, will use microwave-assisted techniques to recycle lithium-ion batteries sustainably.

Rice President Reginald DesRoches began the event by stressing the importance of collaboration. Ramamoorthy Ramesh, executive vice president for research at Rice, echoed that statement appearing via Zoom to applaud the efforts of doing what is right for the planet and having a partner in Chevron.

“I’m excited to support emerging leaders like you all in this room, who are focused on scalable, innovative solutions because the world needs them,” Chris Powers, vice president of carbon capture, utilization and storage and emerging at Chevron New Energies and a Rice alum, says at the event. “Innovation and collaboration across sectors and borders will be key to unlocking the full potential of lower carbon energies, and it’s groups like you, our newest Chevron Fellows, that can help move the needle when it comes to translating, or evolving, the energy landscape for the future.”

To see a full list of fellows, click here.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Greentown and partners name 10 startups to carbontech accelerator

new cohort

The Carbon to Value Initiative (C2V Initiative)—a collaboration between Greentown Labs, NYU Tandon School of Engineering's Urban Future Lab and Fraunhofer USA—has announced 10 startup participants to join the fifth cohort of its carbontech accelerator.

The six-month accelerator aims to help cleantech startups advance their commercialization efforts through access to the C2V Initiative’s Carbontech Leadership Council (CLC). The invitation-only council consists of corporate and nonprofit leaders from organizations like Shell, TotalEnergies, XPRIZE, L’Oréal and others who “foster commercialization opportunities and identify avenues for technology validation, testing, and demonstration,” according to a release from Greentown

“The No. 1 reason startups engage with Greentown is to find customers, grow their businesses, and accelerate impact—and the Carbon to Value Initiative delivers exactly that,” Georgina Campbell Flatter, CEO of Greentown, said in a news release. “It’s a powerful example of how meaningful engagement between entrepreneurs and industry turns innovation into commercial traction.”

The C2V Initiative received more than 100 applications from 33 countries, representing a variety of carbontech innovations. The 10 startups chosen for the 2025 fifth cohort include:

  • Cambridge, Massachusetts-based Sora Fuel, which integrates direct-air capture with direct conversion of the captured carbon into syngas for production of sustainable aviation fuel
  • Brooklyn-based Arbon, which develops a humidity-swing carbon-capture solution by capturing CO₂ from the air or point-source without heat or pressure
  • New York-based Cella Mineral Storage, which works to develop subsurface mineralization technology with integrated software, enabling new ways to sequester CO2 underground
  • Germany-based ICODOS, which helps transform emissions into value through a point-source carbon capture and methanol synthesis process in a single, modularized system
  • Vancouver-based Lite-1, which uses advanced biomanufacturing processes to produce circular colourants for use in textiles, cosmetics and food
  • London-based Mission Zero Technologies, which has developed and deployed an electrified, direct-air carbon capture solution that employs both liquid-adsorption and electrochemical technologies
  • Kenya-based Octavia Carbon, which develops a solid-adsorption-based, direct-air carbon capture solution that utilizes geothermal heat
  • California-based Rushnu, which combines point-source carbon capture with chemical production, turning salt and CO2 into chlorine-based chemicals and minerals
  • Brooklyn-based Turnover Labs, which develops modular electrolyzers that transform raw, industrial CO2 emissions into chemical building blocks, without capture or purification
  • Ontario-based Universal Matter, which develops a Flash Joule Heating process that converts carbon waste such as end-of-life plastics, tires or industrial waste into graphene

The C2V Initiative is based on Greentown Go, Greentown’s open-innovation program. The C2V Initiative has supported 35 startups that have raised over $600 million in follow-on funding.

Read about the 2024 cohort here.

CenterPoint gets go-ahead for $2.9B upgrade of Houston grid

grid resiliency

Texas utility regulators have given the green light for Houston-based CenterPoint Energy to spend $2.9 billion on strengthening its Houston-area electric grid to better withstand extreme weather.

The cost of the plan is nearly $3 billion below what CenterPoint initially proposed to the Public Utility Commission of Texas.

In early 2025, CenterPoint unveiled a $5.75 billion plan to upgrade its Houston-area power system from 2026 through 2028. But the price tag dropped to $2.9 billion as part of a legal settlement between CenterPoint and cities in the utility’s service area.

Sometime after the first quarter of next year, CenterPoint customers in the Houston area will pay an extra $1 a month for the next three years to cover costs of the resiliency plan. CenterPoint serves 2.9 million customers in a 12-county territory anchored by Houston.

CenterPoint says the plan is part of its “commitment to building the most resilient coastal grid in the country.”

A key to improving CenterPoint’s local grid will be stepping up management of high-risk vegetation (namely trees), which ranks as the leading cause of power outages in the Houston area. CenterPoint says it will “go above and beyond standard vegetation management by implementing an industry-leading three-year trim cycle,” clearing vegetation from thousands of miles of power lines.

The utility company says its plan aims to prevent Houston-area power outages in case of hurricanes, floods, extreme temperatures, tornadoes, wildfires, winter storms, and other extreme weather events.

CenterPoint says the plan will:

  • Improve systemwide resilience by 30 percent
  • Expand the grid’s power-generating capacity. The company expects power demand in the Houston area to grow 2 percent per year for the foreseeable future.
  • Save about $50 million per year on storm cleanup costs
  • Avoid outages for more than 500,000 customers in the event of a disaster like last year’s Hurricane Beryl
  • Provide 130,000 stronger, more storm-resilient utility poles
  • Put more than 50 percent of the power system underground
  • Rebuild or upgrade more than 2,200 transmission towers
  • Modernize 34,500 spans of underground cables

In the Energy Capital of the World, residents “expect and deserve an electric system that is safe, reliable, cost-effective, and resilient when they need it most. We’re determined to deliver just that,” Jason Wells, president and CEO of CenterPoint, said in January.

Solidec partners with Australian company for clean hydrogen peroxide pilot​

rare earth pilot

Solidec has partnered with Australia-based Lynas Rare Earth, an environmentally responsible producer of rare earth oxides and materials, to reduce emissions from hydrogen peroxide production.

The partnership marks a milestone for the Houston-based clean chemical manufacturing startup, as it would allow the company to accelerate the commercialization of its hydrogen peroxide generation technology, according to a news release.

"This collaboration is a major milestone for Solidec and a catalyst for sustainability in rare earths," Yang Xia, co-founder and CTO of Solidec, said in the release. "Solidec's technology can reduce the carbon footprint of hydrogen peroxide production by up to 90%. By combining our generators with the scale of a global leader in rare earths, we can contribute to a more secure, sustainable supply of critical minerals."

Through the partnership, Solidec will launch a pilot program of its autonomous, on-site generators at Lynas's facility in Australia. Solidec's generators extract molecules from water and air and convert them into carbon emission-free chemicals and fuels, like hydrogen peroxide. The generators also eliminate the need for transport, storage and permitting, making for a simpler, more efficient process for producing hydrogen peroxide than the traditional anthraquinone process.

"Hydrogen peroxide is essential to rare earth production, yet centralized manufacturing adds cost and complexity," Ryan DuChanois, co-founder and CEO of Solidec, added in the release. "By generating peroxide directly on-site, we're reinventing the chemical supply chain for efficiency, resilience, and sustainability."

The companies report that the pilot is expected to generate 10 tons of hydrogen peroxide per year.

If successful, the pilot would serve as a model for large-scale deployments of Solidec's generators across Lynas' operations—and would have major implications for the high-performance magnet, electric vehicles, wind turbine, and advanced electronics industries, which rely on rare earth elements.

"This partnership with Solidec is another milestone on the path to achieving our Towards 2030 vision," Luke Darbyshire, general manager of R&I at Lynas, added. "Working with Solidec allows us to establish transformative chemical supply pathways that align with our innovation efforts, while contributing to our broader vision for secure, sustainable rare earth supply chains."