Chevron's newest deepwater oil and natural gas production project, called the Anchor, is an all-electric facility. Photo courtesy of Chevron

Chevron's new massive deepwater oil and natural gas project in the Gulf of Mexico is officially up and running.

Chevron Corp., which recently announced its relocating its global headquarters to Houston, has officially started oil and natural gas production from its Anchor project in the U.S. Gulf of Mexico.

The semi-submersible floating production unit features a high-pressure technology that operates at up to 20,000 psi with reservoir depths reaching 34,000 feet below sea level, Chevron reports, and has a capacity of 75,000 gross barrels of oil per day and 28 million gross cubic feet of natural gas per day.

“The Anchor project represents a breakthrough for the energy industry,” Nigel Hearne, executive vice president of Chevron Oil - Products & Gas, says in a news release. “Application of this industry-first deepwater technology allows us to unlock previously difficult-to-access resources and will enable similar deepwater high-pressure developments for the industry.”

The Anchor project is Chevron’s sixth currently operating facility in the U.S. Gulf of Mexico. Photo courtesy of Chevron

Located 140 miles off the coast of Louisiana in the Green Canyon area and in water depths of approximately 5,000 feet, the Anchor is an all-electric facility with electric motors and electronic controls. The project utilizes waste heat and vapor recovery units and existing pipeline infrastructure for oil and natural gas transportation.

“This Anchor milestone demonstrates Chevron’s ability to safely deliver projects within budget in the Gulf of Mexico,” adds Bruce Niemeyer, president, Chevron Americas Exploration & Production. “The Anchor project provides affordable, reliable, lower carbon intensity oil and natural gas to help meet energy demand, while boosting economic activity for Gulf Coast communities.”

The Anchor project is Chevron’s sixth currently operating facility in the U.S. Gulf of Mexico, which is one of the lowest carbon intensity oil and gas basins in the world, per the release. By 2026, Chevron expects to be producing a combined total of 300,000 net barrels of oil equivalent per day.

Chevron's subsidiary, Chevron U.S.A. Inc. is the project operator and holds a 62.86 percent working interest. TotalEnergies E&P USA, Inc., the co-owner, holds a 37.14 percent working interest. Chevron estimates that the total potentially recoverable resources from the Anchor field is up to 440 million barrels of oil equivalent.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Gold H2 harvests clean hydrogen from depleted California reservoirs in first field trial

breakthrough trial

Houston climatech company Gold H2 completed its first field trial that demonstrates subsurface bio-stimulated hydrogen production, which leverages microbiology and existing infrastructure to produce clean hydrogen.

Gold H2 is a spinoff of another Houston biotech company, Cemvita.

“When we compare our tech to the rest of the stack, I think we blow the competition out of the water," Prabhdeep Singh Sekhon, CEO of Gold H2 Sekhon previously told Energy Capital.

The project represented the first-of-its-kind application of Gold H2’s proprietary biotechnology, which generates hydrogen from depleted oil reservoirs, eliminating the need for new drilling, electrolysis or energy-intensive surface facilities. The Woodlands-based ChampionX LLC served as the oilfield services provider, and the trial was conducted in an oilfield in California’s San Joaquin Basin.

According to the company, Gold H2’s technology could yield up to 250 billion kilograms of low-carbon hydrogen, which is estimated to provide enough clean power to Los Angeles for over 50 years and avoid roughly 1 billion metric tons of CO2 equivalent.

“This field trial is tangible proof. We’ve taken a climate liability and turned it into a scalable, low-cost hydrogen solution,” Sekhon said in a news release. “It’s a new blueprint for decarbonization, built for speed, affordability, and global impact.”

Highlights of the trial include:

  • First-ever demonstration of biologically stimulated hydrogen generation at commercial field scale with unprecedented results of 40 percent H2 in the gas stream.
  • Demonstrated how end-of-life oilfield liabilities can be repurposed into hydrogen-producing assets.
  • The trial achieved 400,000 ppm of hydrogen in produced gases, which, according to the company,y is an “unprecedented concentration for a huff-and-puff style operation and a strong indicator of just how robust the process can perform under real-world conditions.”
  • The field trial marked readiness for commercial deployment with targeted hydrogen production costs below $0.50/kg.

“This breakthrough isn’t just a step forward, it’s a leap toward climate impact at scale,” Jillian Evanko, CEO and president at Chart Industries Inc., Gold H2 investor and advisor, added in the release. “By turning depleted oil fields into clean hydrogen generators, Gold H2 has provided a roadmap to produce low-cost, low-carbon energy using the very infrastructure that powered the last century. This changes the game for how the world can decarbonize heavy industry, power grids, and economies, faster and more affordably than we ever thought possible.”

Rice University spinout lands $500K NSF grant to boost chip sustainability

cooler computing

HEXAspec, a spinout from Rice University's Liu Idea Lab for Innovation and Entrepreneurship, was recently awarded a $500,000 National Science Foundation Partnership for Innovation grant.

The team says it will use the funding to continue enhancing semiconductor chips’ thermal conductivity to boost computing power. According to a release from Rice, HEXAspec has developed breakthrough inorganic fillers that allow graphic processing units (GPUs) to use less water and electricity and generate less heat.

The technology has major implications for the future of computing with AI sustainably.

“With the huge scale of investment in new computing infrastructure, the problem of managing the heat produced by these GPUs and semiconductors has grown exponentially. We’re excited to use this award to further our material to meet the needs of existing and emerging industry partners and unlock a new era of computing,” HEXAspec co-founder Tianshu Zhai said in the release.

HEXAspec was founded by Zhai and Chen-Yang Lin, who both participated in the Rice Innovation Fellows program. A third co-founder, Jing Zhang, also worked as a postdoctoral researcher and a research scientist at Rice, according to HEXAspec's website.

The HEXASpec team won the Liu Idea Lab for Innovation and Entrepreneurship's H. Albert Napier Rice Launch Challenge in 2024. More recently, it also won this year's Energy Venture Day and Pitch Competition during CERAWeek in the TEX-E student track, taking home $25,000.

"The grant from the NSF is a game-changer, accelerating the path to market for this transformative technology," Kyle Judah, executive director of Lilie, added in the release.

---

This article originally ran on InnovationMap.