Ten climatetech startups were named most-promising at this annual Rice Alliance Energy Tech Venture Forum. Photo courtesy Rice Alliance.

Investors at the Rice Alliance Energy Tech Venture Forum have named the 10 most-promising startups among the group of 100 clean tech companies participating in the event.

The 22nd annual event was held yesterday, Sept. 18, at Rice University’s Jones Graduate School of Business and was part of the second Houston Energy and Climate Startup Week.

The most-promising startups will receive $7,000 in in-kind legal services from Baker Botts.

The 10 most-promising companies included:

  • Houston-based Xplorobot, which has developed laser gas imaging technology for the first handheld methane detection device approved by the EPA as an alternative test method
  • Seattle-based Badwater Alchemy, a desalination company that uses nano materials to purify saline water at a fraction of the cost of traditional methods
  • San Francisco-based Ammobia, which is developing a clean ammonia production process
  • Illinois-based Celadyne Technologies, which is building hydrogen for industrial decarbonization with durable and efficient fuel cells and electrolyzers
  • Massachusetts-based MacroCycle Technologies, which converts plastic waste in the form of bottles, food trays and polyester textiles into virgin-grade mPET resin
  • Massachusetts-based AtoMe, which uses nano-ceramics to develop ultra-durable metals for 3D printing
  • Colorado-based Advanced Thermovoltaic Systems (ATS) Energy, a renewable energy semiconductor manufacturing company
  • North Carolina-based Lukera Energy, which is converting waste methane into high-value fuel
  • Midland, Texas-based AI Driller, a company that uses AI and machine learning to enable remote operations and provide historical drilling data for survey management, anti-collision monitoring and iob reporting
  • New York-based Fast Metals Inc., which has developed a chemical process to extract valuable metals from complex toxic mine tailings that is capable of producing iron, aluminum, scandium, titanium and other rare earth elements using industrial waste and waste CO2 as inputs

Arculus Solutions won the People's Choice Award. The New Jersey-based company retrofits natural gas pipelines for safe hydrogen transportation. It also won Track A: Hydrogen, Fuel Cells, Buildings, Water, & Other Energy Solutions at the Energy Venture Day and Pitch Competition during CERAWeek earlier this year.

The 100 energy technology ventures selected to participate in the forum were named earlier this year. See the full list here.

Investors in Houston and across Texas are proving to be transformational partners to finance and grow energy hardware startups. Photo via Getty Images

Experts: To power an energy revolution, a financing evolution is needed

guest column

Texas is a national leader in wind and solar, generating more energy in these categories than any other state since 2006 and double that of next placed California. As investment in renewable energy continues to skyrocket, the limitations of the 19th-century grid prevent the industry from realizing the benefits of this 21st-century technology.

For years, Texas has grappled with insufficient infrastructure for its current mix of energy sources, which includes surging renewables. The Alternating Current (AC) grid — the standard since the 1800s — requires matching supply and demand in real-time to maintain a stable frequency, which is complex and costly, especially with renewable energy when the sun doesn’t always shine and the wind doesn’t always blow.

Startup firms are busy developing technologies to solve this issue. For example, it’s possible to modernize the AC grid to control the voltage of the distribution network precisely, to ensure fast adjustments to demand, and to adapt to changes in supply from renewables. Enoda, a U.K.-based scale-up, is an example of an innovative company developing and delivering technology to enable the AC grid to accommodate much higher levels of renewable energy and electrification.

Equally important to these technical innovations are innovations in financing for energy startups. On two levels, investors in Houston and across Texas are proving to be transformational partners to finance and grow energy hardware startups.

1. Innovative Funding Structures

Because of the long timelines, hardware investing requires, in part, more patient capital than the typical Silicon Valley venture capital model prevalent in startup investments. Their playbook is best suited for software companies that develop new features in weeks or months. Energy hardware startups require a longer timeline because of the far greater complexity and upfront capital outlay.

Texas investment firms and family offices are, however, accustomed to investing in complex energy projects with longer development timelines. This complexity presents a high barrier to entry for competitors, which significantly increases the upside potential that risk-capital investors seek should the innovation find market traction. At the same time, up-front capital requirements have decreased considerably, making hardware more appealing to investors.

2. Visionary partnership

Attracting investors and demonstrating early-stage traction differs for hardware companies because of the lengthy pre-revenue R&D process. Software innovators can launch with a minimum viable product, gain a few early customers, and then grow incrementally. By contrast, energy hardware technology must be fully developed from launch. Each Enoda PRIME exchanger, from the first unit sold, represents a piece of critical infrastructure on which households will rely for their electricity supply for its 30-year lifespan. For venture investors who focus on software, it’s easy to assess the health of a software company based on well-established metrics related to customer growth and the cost of customer acquisition.

Hardware investing requires investors to have a much deeper understanding of the problem being solved and assess the quality of the solution objectively rather than rely on early customers for a minimum viable product. Texas investors have been quick to understand the problems that the energy industry must solve around energy balancing and keeping the frequency of a system stable in order to grow renewable energy. Why the keen insight? Because that problem is being solved today by gas power plants. A visionary investor with many years of deep industry perspective is far more likely to appreciate that than a VC firm looking across many industries based on a standard set of metrics.

Visionary partnership is precisely what energy startups need because it’s important not to evaluate the company as it is today but what it will be in five years. Hardware startups need visionary investor partners who understand the importance of parallel pathing fundamental innovation, product development and delivery, and customer development to grow and succeed. Hardware startups succeed only when they can do these things simultaneously—and require investors who can imagine a possible future and understand the path to reach it.

Changing the way investment works

Many energy startups are worthy inheritors of Houston’s bold entrepreneurial spirit that led to technological innovations like deep-sea drilling and hydraulic fracturing. They will continue to need equally bold investors who recognize the world of opportunities at their doorstep.

———

Paul Domjan is the founder and chief policy and global affairs officer at Enoda. Derek Jones and Paul Morico are partners at Baker Botts.

Houston is primed to become an energy tech hub amid ongoing energy transition. Photo via Getty Images

Houston has what it takes to be a leading energy tech hub, says expert

Guest column

As the energy capital of the world, Houston has been a long-time leader in the energy industry, particularly oil and gas. With cutting-edge research and technological breakthroughs, unique talent of energy veterans and engineering know-how, the city is swiftly developing into a booming energy technology hub.

Houston’s R&D, talent pool, energy infrastructure, and favorable business environment is fostering the growth of technology-driven energy initiatives. These factors differentiate Houston's energy tech ecosystem from other tech hubs in the U.S., in similar ways to how Silicon Valley has been known for technology and software and Boston and New York for biotech and fintech ecosystems, respectively.

Primarily, Houston's proximity to major energy players has played a crucial role in its evolution as an energy technology hub. Around 34 percent of all publicly traded oil and gas companies in the U.S. are headquartered in the city. Even the energy companies that are headquartered outside of Houston (e.g., Exelon, Duke Energy, and NextEra Energy) have established their energy transition headquarters and plants/infrastructure here. This proximity enables energy technology startups easy access to market, expertise, resources, and funding, fostering a vibrant ecosystem that supports their growth.

Moreover, with an expanding network of academic and commercial R&D activity, the city has become a rising hub of technological development. It currently houses more than 21 business research centers focusing on various aspects related to energy transition through design, prototype, and applied intelligence studios.

For instance, the Greater Houston Partnership, a key organization in promoting Houston’s economic growth, has been actively involved in positioning the city as a leader in the global energy transition space. Some of the notable green energy startups leading Houston’s energy transition are Sunnova, Solugen, Fervo Energy, Syzygy Plasmonics, Ionada, and Energy Transition Ventures.

The emergence of startup development organizations throughout the city, including workplaces, incubators, and accelerators, in recent years has fostered collaboration among founders, investors, and talent, thereby accelerating the rate of business formation and growth. Accelerators and incubators such as Halliburton Labs, Greentown Labs, The Ion District, and Rice Alliance Clean Energy Accelerator are key supporters of innovation and entrepreneurship in Houston’s energy technology landscape.

In addition, government funding is catalyzing Houston’s growth in energy tech. Most prominently, the 2022 Inflation Reduction Act (IRA) is likely to stimulate greater investment in solar and wind energy, charging infrastructure, and electric vehicles in Houston. It will support the city’s R&D institutions and technology developers in pioneering energy transition for carbon capture, utilization and storage (CCS/CCUS), hydrogen, and renewable fuels, resulting in a 13-fold increase in capital expenditure for infrastructure between 2024 and 2035.

The Bipartisan Infrastructure Law and Advanced Research Projects Agency-Energy (ARPA-E) also focus on promoting and funding research and development of advanced energy technologies, many of which are coming out of Houston.

Further, Houston has a strong talent pool with a workforce of three million individuals and the fourth largest concentration of engineers in the US. In 2022, the growth rate of tech employment in the region was 3.5 percent while the national growth rate was 3.2 percent.

The energy industry, research institutions, and government are coming together in Houston to propel it to become a leader in energy technology. However, the city still has a ways to go: Houston needs to build more in non-traditional energy sectors (e.g. wind, solar, etc.), attract more entrepreneurs to start companies here, and get more investors to invest here. Having successful energy tech exits and reinvestment in new startups here would help.

Houston has tremendous potential to lead energy technology, and with the rapidly growing focus of research, businesses, and government policies on energy transition. The confluence of energy tech players coming together in Houston is driving its evolution as an energy tech hub, making it an exciting place for new technologies and businesses to develop and grow, and reinvest in Houston.

---

Michael Torosian is a partner in the corporate practice in the San Francisco office of Baker Botts. He is outside general counsel to emerging companies and their investors and advisors at all stages. This article originally ran on InnovationMap.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

ERCOT to capture big share of U.S. solar power growth through 2027

solar growth

Much of the country’s growth in utility-scale solar power generation will happen in the grid operated by the Electric Reliability Council of Texas (ERCOT), according to a new forecast.

The U.S. Energy Information Administration (EIA) predicts that solar power supplied to the ERCOT grid will jump from 56 billion kilowatt-hours in 2025 to 106 billion kilowatt-hours by the end of 2027. That would be an increase of 89 percent.

In tandem with the rapid embrace of solar power, EIA anticipates battery storage capacity for ERCOT will expand from 15 gigawatts in 2025 to 37 gigawatts by the end of 2027, or 147 percent.

EIA expects utility-scale solar to be the country’s fastest-growing source of power generation from 2025 to 2027. It anticipates that this source will climb from 290 billion kilowatt-hours last year to 424 billion kilowatt-hours next year, or 46 percent.

Based on EIA’s projections, ERCOT’s territory would account for one-fourth of the country’s utility-scale solar power generation by the end of next year.

“Solar power and energy storage are the fastest-growing grid technologies in Texas, and can be deployed more quickly than any other generation resource,” according to the Texas Solar + Storage Association. “In the wholesale market, solar and storage are increasing grid reliability, delivering consumer affordability, and driving tax revenue and income streams into rural Texas.”

Expert: Why Texas must make energy transmission a top priority in 2026

guest column

Texas takes pride in running one of the most dynamic and deregulated energy markets in the world, but conversations about electricity rarely focus on what keeps it moving: transmission infrastructure.

As ERCOT projects unprecedented electricity demand growth and grid operators update their forecasts for 2026, it’s becoming increasingly clear that generation, whether renewable or fossil, is only part of the solution. Transmission buildout and sound governing policy now stand as the linchpin for reliability, cost containment, and long-term resilience in a grid under unprecedented stress.

At the heart of this urgency is one simple thing: demand. Over 2024 and 2025, ERCOT has been breaking records at a pace we haven’t seen before. From January through September of 2025 alone, electricity use jumped more than 5% over the year before, the fastest growth of any major U.S. grid. And it’s not slowing down.

The Energy Information Administration expects demand to climb another 14% in 2026, pushing total consumption to roughly 425 terawatt-hours in just the first nine months. That surge isn’t just about more people moving to Texas or running their homes differently; it’s being driven by massive industrial and technology loads that simply weren’t part of the equation ten years ago.

The most dramatic contributor to that rising demand is large-scale infrastructure such as data centers, cloud computing campuses, crypto mining facilities, and electrified industrial sectors. In the latest ERCOT planning update, more than 233 gigawatts of total “large load” interconnection requests were being tracked, an almost 300% jump over just a year earlier, with more than 70% of those requests tied to data centers.

Imagine hundreds of new power plants requesting to connect to the grid, all demanding uninterrupted power 24/7. That’s the scale of the transition Texas is facing, and it’s one of the major reasons transmission planning is no longer back-of-house policy talk but a central grid imperative.

Yet transmission is complicated, costly, and inherently long-lead. It takes three to six years to build new transmission infrastructure, compared with six to twelve months to add a new load or generation project.

This is where Texas will feel the most tension. Current infrastructure can add customers and power plants quickly, but the lines to connect them reliably take time, money, permitting, and political will.

To address these impending needs, ERCOT wrapped up its 2024 Regional Transmission Plan (RTP) at the end of last year, and the message was pretty clear: we’ve got work to do. The plan calls for 274 transmission projects and about 6,000 miles of new, rebuilt, or upgraded lines just to handle the growth coming our way and keep the lights on.

The plan also suggests upgrading to 765-kilovolt transmission lines, a big step beyond the standard 345-kV system. When you start talking about 765-kilovolt transmission lines, that’s a big leap from what Texas normally uses. Those lines are built to move a massive amount of power over long distances, but they’re expensive and complicated, so they’re only considered when planners expect demand to grow far beyond normal levels. Recommending them is a clear signal that incremental upgrades won’t be enough to keep up with where electricity demand is headed.

There’s a reason transmission is suddenly getting so much attention. ERCOT and just about every industry analyst watching Texas are projecting that electricity demand could climb as high as 218 gigawatts by 2031 if even a portion of the massive queue of large-load projects actually comes online. When you focus only on what’s likely to get built, the takeaway is the same: demand is going to stay well above anything we’ve seen before, driven largely by the steady expansion of data centers, cloud computing, and digital infrastructure across the state.

Ultimately, the decisions Texas makes on transmission investment and the policies that determine how those costs are allocated will shape whether 2026 and the years ahead bring greater stability or continued volatility to the grid. Thoughtful planning can support growth while protecting reliability and affordability, but falling short risks making volatility a lasting feature of Texas’s energy landscape.

Transmission Policy: The Other Half of the Equation

Infrastructure investment delivers results only when paired with policies that allow it to operate efficiently and at scale. Recognizing that markets alone won’t solve these challenges, Texas lawmakers and regulators have started creating guardrails.

For example, Senate Bill 6, now part of state law, aims to improve how large energy consumers are managed on the grid, including new rules for data center operations during emergencies and requirements around interconnection. Data centers may even be required to disconnect under extreme conditions to protect overall system reliability, a novel and necessary rule given their scale.

Similarly, House Bill 5066 changed how load forecasting occurs by requiring ERCOT to include utility-reported projections in its planning processes, ensuring transmission planning incorporates real-world expectations. These policy updates matter because grid planning isn’t just a technical checklist. It’s about making sure investment incentives, permitting decisions, and cost-sharing rules are aligned so Texas can grow its economy without putting unnecessary pressure on consumers.

Without thoughtful policy, we risk repeating past grid management mistakes. For example, if transmission projects are delayed or underfunded while new high-demand loads come online, we could see congestion worsen. If that happens, affordable electricity would be located farther from where it’s needed, limiting access to low-cost power for consumers and slowing overall economic growth. That’s especially critical in regions like Houston, where energy costs are already a hot topic for households and businesses alike.

A 2026 View: Strategy Over Shortage

As we look toward 2026, here are the transmission and policy trends that matter most:

  • Pipeline of Projects Must Stay on Track: ERCOT’s RTP is ambitious, and keeping those 274 projects, thousands of circuit miles, and next-generation 765-kV lines moving is crucial for reliability and cost containment.
  • Large Load Forecasting Must Be Nuanced: The explosion in large-load interconnection requests, whether or not every project materializes, signals demand pressure that transmission planners cannot ignore. Building lines ahead of realized demand is not wasteful planning; it’s insurance against cost and reliability breakdowns.
  • Policy Frameworks Must Evolve: Laws like SB 6 and HB 5066 are just the beginning. Texas needs transparent rules for cost allocation, interconnection standards, and emergency protocols that keep consumers protected while supporting innovation and economic growth.
  • Coordination Among Stakeholders Is Critical: Transmission doesn’t stop at one utility’s borders. Regional cooperation among utilities, ERCOT, and local stakeholders is essential to manage congestion and develop systemwide reliability solutions.

Here’s the bottom line: Generation gets the headlines, but transmission makes the grid work. Without a robust transmission buildout and thoughtful governance, even the most advanced generation mix that includes wind, solar, gas, and storage will struggle to deliver the reliability Texans expect at a price they can afford.

In 2026, Texas is not merely testing its grid’s capacity to produce power; it’s testing its ability to move that power where it’s needed most. How we rise to meet that challenge will define the next decade of energy in the Lone Star State.

———

Sam Luna is director at BKV Energy, where he oversees brand and go-to-market strategy, customer experience, marketing execution, and more.