Venus Aerospace is one step closer to high-speed international travel. Photo courtesy Venus Aerospace

A Houston-headquartered hardtech company that's working on technology to enable hypersonic travel has announced a partnership with NASA to test its tech.

Venus Aerospace has partnered with NASA’s Marshall Space Flight Center in Huntsville, Alabama, on what is reportedly the longest sustained tests of a rotating detonation rocket engine, also known as an RDRE.

“Venus believes strongly in the performance step-change that RDREs bring for both hypersonic and space applications. The partnership with NASA has been key in maturing this new technology.” Andrew Duggleby, CTO and co-founder of Venus Aerospace, says in a news release.

The company's engine injector, which used regeneratively-cooled RDRE architecture, was tested in a "flight-like manner," according to the company. The technology operated successfully for 4 minutes of hotfire testing — a significant improvement, as engine tests of this type last for only 1 to 2 seconds, according to Venus.

"This long-duration hotfire means RDRE’s have retired a major risk area and are able to move into the few remaining steps before a flight demonstration," reads the press release from Venus.

As Venus continues to develop its technology for research, defense, and commercial missions, it will continue to work with NASA, which is also looking into RDRE technology for lunar and martian landers, in-space operations and logistics, and other deep space missions, per the release, because RDREs are more compact, efficient, and versatile than traditional rocket engines.

"Venus has entered into a second-year contract with NASA to provide engine parts for research and development of NASA’s RDRE," the news release continues. "In year two, NASA, with Venus’s support, will test different propellant combinations on hardware, to operate at even higher thrust levels and to demonstrate efficiency gains promised by the detonation engine."

Last summer, Venus added a new investor to its cap table. Andrew Duggleby founded Venus Aerospace with his wife and CEO Sarah "Sassie" Duggleby in 2020, before relocating to the Houston Spaceport in 2021. Last year, Venus raised a $20 million series A round.

———

This article originally ran on InnovationMap.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

New report maps Houston workforce development strategies as companies transition to cleaner energy

to-do list

The University of Houston’s Energy University latest study with UH’s Division of Energy and Innovation with stakeholders from the energy industry, academia have released findings from a collaborative white paper, titled "Workforce Development for the Future of Energy.”

UH Energy’s workforce analysis found that the greatest workforce gains occur with an “all-of-the-above” strategy to address the global shift towards low-carbon energy solutions. This would balance electrification and increased attention to renewables with liquid fuels, biomass, hydrogen, carbon capture, utilization and storage commonly known as CCUS, and carbon dioxide removal, according to a news release.

The authors of the paper believe this would support economic and employment growth, which would leverage workers from traditional energy sectors that may lose jobs during the transition.

The emerging hydrogen ecosystem is expected to create about 180,000 new jobs in the greater Houston area, which will offer an average annual income of approximately $75,000. Currently, 40 percent of Houston’s employment is tied to the energy sector.

“To sustain the Houston region’s growth, it’s important that we broaden workforce participation and opportunities,” Ramanan Krishnamoorti, vice president of energy and innovation at UH, says in a news release. “Ensuring workforce readiness for new energy jobs and making sure we include disadvantaged communities is crucial.”

Some of the key takeaways include strategies that include partnering for success, hands-on training programs, flexible education pathways, comprehensive support services, and early and ongoing outreach initiatives.

“The greater Houston area’s journey towards a low-carbon future is both a challenge and an opportunity,” Krishnamoorti continues. “The region’s ability to adapt and lead in this new era will depend on its commitment to collaboration, innovation, and inclusivity. By preparing its workforce, engaging its communities, and leveraging its industrial heritage, we can redefine our region and continue to thrive as a global energy leader.”

The study was backed by federal funding from the Department of the Treasury through the State of Texas under the Resources and Ecosystems Sustainability, Tourist Opportunities, and Revived Economies of the Gulf Coast States Act of 2012.

Houston geothermal startup selects Texas location for first energy storage facility

major milestone

Houston-based geothermal energy startup Sage Geosystems has teamed up with a utility provider for an energy storage facility in the San Antonio metro area.

The three-megawatt EarthStore facility will be on land controlled by the San Miguel Electric Cooperative, which produces electricity for customers in 47 South Texas counties. The facility will be located in the town of Christine, near the cooperative’s coal-fired power plant.

Sage says its energy storage system will be paired with solar energy to supply power for the grid operated by the Electric Reliability Council of Texas (ERCOT). The facility is set to open later this year.

“Once operational, our EarthStore facility in Christine will be the first geothermal energy storage system to store potential energy deep in the earth and supply electrons to a power grid,” Cindy Taff, CEO of Sage Geosystems, says in a news release.

The facility is being designed to store geothermal energy during six- to 10-hour periods.

“Long-duration energy storage is crucial for the ERCOT utility grid, especially with the increasing integration of intermittent wind and solar power generation,” says Craig Courter, CEO of the San Miguel Electric Cooperative.